Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2009 Feb;73(2):295-9.
doi: 10.1016/j.ijporl.2008.10.020. Epub 2008 Dec 17.

The use of piperacillin-tazobactam coated tympanostomy tubes against ciprofloxacin-resistant Pseudomonas biofilm formation: an in vitro study

Affiliations

The use of piperacillin-tazobactam coated tympanostomy tubes against ciprofloxacin-resistant Pseudomonas biofilm formation: an in vitro study

Chul Ho Jang et al. Int J Pediatr Otorhinolaryngol. 2009 Feb.

Abstract

Background and objective: Bacterial biofilm formation has been implicated in the high rate of persistent otorrhea after tympanostomy tube insertion. It has been suggested that the tube material may be an important factor in the development of otorrhea. Recently we reported the presence of ciprofloxacin-resistant Pseudomonas aeruginosa (CRPA) biofilms on infected tympanostomy tubes following the use of intractable post-tympanostomy tubes and the onset of otorrhea. In this study, we have evaluated the resistance of piperacillin-tazobactam coated with chitosan on a tympanostomy tube to prevent CRPA biofilm formation in vitro.

Materials and methods: Three sets each of piperacillin-tazobactam coated silicone tubes (n=5), commercial silver-oxide coated silicone tubes (Activent, Silic) (n=5) and control uncoated tympanostomy tubes (Paparella type 1) (n=5) were processed for evaluation. The piperacillin-tazobactam coated tympanostomy tubes were compared with the silver-oxide coated tubes and the uncoated control tubes for resistance to CRPA biofilm formation after in vitro incubation.

Results: Scanning electron microscopy showed that the surface of the silver-oxide coated tube (Activent) formed a thick biofilm with crusts as well as an uncoated tube. In contrast, the surface of a piperacillin-tazobactam coated tympanostomy tube showed virtually no CRPA biofilm formation.

Conclusion: The piperacillin-tazobactam coated tympanostomy tube showed resistance to CRPA biofilm formation. The piperacillin-tazobactam coating may be useful to reduce CRPA biofilm formation; however, further in vivo studies are necessary.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources