Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1991 Sep 3;30(35):8541-5.
doi: 10.1021/bi00099a007.

Identification of lysyl residues located at the substrate-binding site in UDP-glucose pyrophosphorylase from potato tuber: affinity labeling with uridine di- and triphosphopyridoxals

Affiliations

Identification of lysyl residues located at the substrate-binding site in UDP-glucose pyrophosphorylase from potato tuber: affinity labeling with uridine di- and triphosphopyridoxals

Y Kazuta et al. Biochemistry. .

Abstract

Uridine di- and triphosphopyridoxals were used to probe the substrate-binding site in potato tuber UDP-glucose pyrophosphorylase (EC 2.7.7.9). The enzyme was rapidly inactivated in time- and dose-dependent manners when incubated with either reagent followed by reduction with sodium borohydride. The inactivations were almost completely retarded by UDP-Glc and UTP but only slightly by alpha-D-glucose 1-phosphate. The complete inactivation corresponded to the incorporation of about 0.9-1.0 mol of either reagent per mole of enzyme monomer. Both reagents appear to bind specifically to the UDP-Glc-(UTP)-binding site. Structural studies of the labeled enzymes revealed that the two reagents modified the identical set of five lysyl residues (Lys-263, Lys-329, Lys-367, Lys-409, and Lys-410), in which Lys-367 was most prominently modified. The ratios of the amounts of labels incorporated into these residues were similar for the two reagents. Furthermore, linear relationships were observed between the residual activities and the amounts of incorporation into each lysyl residue. We conclude that the five lysyl residues are located at or near the UDP-Glc(UTP)-binding site of potato tuber UDP-Glc pyrophosphorylase and that the modification of these residues occurs in a mutually exclusive manner, leading to the inactivation of the enzyme.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms