The molecular basis of pain and its clinical implications in rheumatology
- PMID: 19098926
- DOI: 10.1038/ncprheum0972
The molecular basis of pain and its clinical implications in rheumatology
Abstract
Nociceptive pain in response to peripheral noxious stimuli, and inflammatory pain resulting from tissue damage, serve as warnings that normal bodily function cannot resume until the stimulus abates or the tissue repairs. Stimuli cause numerous receptors, ion channels and other cellular machinery to respond, and propagate signals to the central nervous system, where this information is processed and perceived as pain. In healthy individuals, tissue damage results in physiologic--generally reparative--changes that lead to heightened sensory perception and, often, pain. In rheumatic diseases, the joint pain bears much in common with chronic inflammatory pain, but the underlying disease state is typically much more intricate and no reparative function is evident. Addressing the complex pains of rheumatic disease remains an ongoing challenge. Pain signaling pathways involve many molecular components that could potentially be targets for pharmacotherapeutic intervention, but the complexity of this system might also mean that multiple sites must be affected simultaneously to disrupt propagation of pain signals. In addition, to be therapeutically viable, pain drugs must be safe and not alter tactile sensory function, alertness or cognitive function. In this article we review the molecular functions in nociceptive, inflammatory and rheumatic pain pathways, and the therapeutic options they might offer.
References
Publication types
MeSH terms
LinkOut - more resources
Full Text Sources
Medical