Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2008 Dec 19:9:549.
doi: 10.1186/1471-2105-9-549.

nGASP--the nematode genome annotation assessment project

Affiliations

nGASP--the nematode genome annotation assessment project

Avril Coghlan et al. BMC Bioinformatics. .

Abstract

Background: While the C. elegans genome is extensively annotated, relatively little information is available for other Caenorhabditis species. The nematode genome annotation assessment project (nGASP) was launched to objectively assess the accuracy of protein-coding gene prediction software in C. elegans, and to apply this knowledge to the annotation of the genomes of four additional Caenorhabditis species and other nematodes. Seventeen groups worldwide participated in nGASP, and submitted 47 prediction sets across 10 Mb of the C. elegans genome. Predictions were compared to reference gene sets consisting of confirmed or manually curated gene models from WormBase.

Results: The most accurate gene-finders were 'combiner' algorithms, which made use of transcript- and protein-alignments and multi-genome alignments, as well as gene predictions from other gene-finders. Gene-finders that used alignments of ESTs, mRNAs and proteins came in second. There was a tie for third place between gene-finders that used multi-genome alignments and ab initio gene-finders. The median gene level sensitivity of combiners was 78% and their specificity was 42%, which is nearly the same accuracy reported for combiners in the human genome. C. elegans genes with exons of unusual hexamer content, as well as those with unusually many exons, short exons, long introns, a weak translation start signal, weak splice sites, or poorly conserved orthologs posed the greatest difficulty for gene-finders.

Conclusion: This experiment establishes a baseline of gene prediction accuracy in Caenorhabditis genomes, and has guided the choice of gene-finders for the annotation of newly sequenced genomes of Caenorhabditis and other nematode species. We have created new gene sets for C. briggsae, C. remanei, C. brenneri, C. japonica, and Brugia malayi using some of the best-performing gene-finders.

PubMed Disclaimer

Figures

Figure 1
Figure 1
Accuracy of the submitted gene sets. Plots of the specificity against sensitivity of the submitted gene sets, at the base level (A), exon level (B), isoform level (C) and gene level (D). The submitted gene sets are coloured by nGASP category, with ab initio (category 1) gene sets in red, gene-finders that used multi-genome alignments (category 2) in black, gene-finders that used transcript/protein alignments (category 3) in blue, and combiners (category 4) in green. The gene sets are labelled as follows: AU: AUGUSTUS, MG: MGENE, CR: CRAIG, AG: Agene, EU: EUGENE, FPC: Fgenesh++C, FP: Fgenesh++, FG: Fgenesh, GE: GeneID, GM: GeneMark.hmm, GX: GENOMIX, GS: GESECA, GN: GLEAN, GL: GlimmerHMM, GR: Gramene, JW: JIGSAW, MK: MAKER (using SNAP), MG: MGENE, NS: N-SCAN, SG: SGP2, SN: SNAP, EX: ExonHunter, EV: Evigan.
Figure 2
Figure 2
Factors affecting gene-finding accuracy. Plots of gene-level sensitivity against features of genes that are correlated with gene-finding accuracy: (A) the lowest hexamer score of any of the exons in the gene, (B) the number of exons in the gene, (C) the length of the shortest exon in the gene, (D) the length of the longest intron in the gene, (E) the strength of the translation start signal, (F) the lowest score of any of splice sites in the gene, (G) the percent identity with the C. briggsae ortholog at the amino acid level, (H) the maximum distance to a neighbouring gene, and (I) the number of isoforms in the gene. In each plot, the submitted gene sets are coloured by nGASP category, with ab initio (category 1) gene sets in red, gene-finders that used multi-genome alignments (category 2) in black, and gene-finders that used transcript/protein alignments (category 3) in blue. The solid lines show the median sensitivities of the gene sets in a category, while the dashed lines show the maximum sensitivity of the gene sets in a category.
Figure 3
Figure 3
A screenshot from the nGASP genome browser. This shows part of an nGASP test region on chromosome I, with the curated WormBase gene models and the ab initio (category 1) gene sets submitted to nGASP for that region.

References

    1. The C. elegans Sequencing Consortium Genome sequence of the nematode C. elegans: a platform for investigating biology. Science. 1998;282:2012–2018. doi: 10.1126/science.282.5396.2012. - DOI - PubMed
    1. Stein LD, Bao Z, Blasiar D, Blumenthal T, Brent MR, Chen N, Chinwalla A, Clarke L, Clee C, Coghlan A, Coulson A, D'Eustachio P, Fitch DH, Fulton LA, Fulton RE, Griffiths-Jones S, Harris TW, Hillier LW, Kamath R, Kuwabara PE, Mardis ER, Marra MA, Miner TL, Minx P, Mullikin JC, Plumb RW, Rogers J, Schein JE, Sohrmann M, Spieth J, Stajich JE, Wei C, Willey D, Wilson RK, Durbin R, Waterston RH. The genome sequence of Caenorhabditis briggsae: a platform for comparative genomics. PLoS Biol. 2003;1:E45. doi: 10.1371/journal.pbio.0000045. - DOI - PMC - PubMed
    1. Sternberg PW, Waterston RH, Speith J, Eddy SR, Wilson RK. Genome sequence of additional Caenorhabditis species: enhancing the utility of C. elegans as a model organism. National Human Genome Research Institute White Paper; 2003.
    1. Rogers A, Antoshechkin I, Bieri T, Blasiar D, Bastiani C, Canaran P, Chan J, Chen WJ, Davis P, Fernandes J, Fiedler TJ, Han M, Harris TW, Kishore R, Lee R, McKay S, Müller HM, Nakamura C, Ozersky P, Petcherski A, Schindelman G, Schwarz EM, Spooner W, Tuli MA, Van Auken K, Wang D, Wang X, Williams G, Yook K, Durbin R, Stein LD, Spieth J, Sternberg PW. WormBase 2007. Nucleic Acids Res. 2008:D612–617. - PMC - PubMed
    1. Ghedin E, Wang S, Spiro D, Caler E, Zhao Q, Crabtree J, Allen JE, Delcher AL, Guiliano DB, Miranda-Saavedra D, Angiuoli SV, Creasy T, Amedeo P, Haas B, El-Sayed NM, Wortman JR, Feldblyum T, Tallon L, Schatz M, Shumway M, Koo H, Salzberg SL, Schobel S, Pertea M, Pop M, White O, Barton GJ, Carlow CK, Crawford MJ, Daub J, Dimmic MW, Estes CF, Foster JM, Ganatra M, Gregory WF, Johnson NM, Jin J, Komuniecki R, Korf I, Kumar S, Laney S, Li BW, Li W, Lindblom TH, Lustigman S, Ma D, Maina CV, Martin DM, McCarter JP, McReynolds L, Mitreva M, Nutman TB, Parkinson J, Peregrín-Alvarez JM, Poole C, Ren Q, Saunders L, Sluder AE, Smith K, Stanke M, Unnasch TR, Ware J, Wei AD, Weil G, Williams DJ, Zhang Y, Williams SA, Fraser-Liggett C, Slatko B, Blaxter ML, Scott AL. Draft genome of the filarial nematode parasite Brugia malayi. Science. 2007;317:1756–1760. doi: 10.1126/science.1145406. - DOI - PMC - PubMed

Publication types