Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1991 Sep 15;266(26):17049-59.

Determination of the rate and equilibrium constants for oxygen and carbon monoxide binding to R-state human hemoglobin cross-linked between the alpha subunits at lysine 99

Affiliations
  • PMID: 1910038
Free article

Determination of the rate and equilibrium constants for oxygen and carbon monoxide binding to R-state human hemoglobin cross-linked between the alpha subunits at lysine 99

K D Vandegriff et al. J Biol Chem. .
Free article

Abstract

The kinetics of O2 and CO binding to R-state human hemoglobin A0 and human hemoglobin cross-linked between the alpha chains at Lys99 residues were examined using ligand displacement and partial photolysis techniques. Oxygen equilibrium curves were measured by Imai's continuous recording method (Imai, K. (1981) Methods Enzymol. 76, 438-449). The rate of the R to T transition was determined after full laser photolysis of the carbon monoxide derivative by measuring the resultant absorbance changes at an isosbestic point for ligand binding. Chemical cross-linking caused the R-state O2 affinity of alpha subunits to decrease 6-fold compared with unmodified hemoglobin. This inhibition of O2 binding was the result of both a decrease in the rate constant for ligand association and an increase in the rate constant for dissociation. The O2 affinity of R-state beta subunits was reduced 2-fold because of an increase in the O2 dissociation rate constant. These changes were attributed to proximal effects on the R-state hemes as the result of the covalent cross-link between alpha chain G helices. This proximal strain in cross-linked hemoglobin was also expressed as a 5-fold higher rate for the unliganded R to T allosteric transition. The fourth O2 equilibrium binding constant, K4, measured by kinetic techniques, could be used to analyze equilibrium curves for either native or cross-linked hemoglobin. The resultant fitted values of the Adair constants, a1, a2, and a3 were similar to those obtained when K4 was allowed to vary, and the fits were of equal quality. When K4 was fixed to the kinetically determined value, the remaining Adair constants, particularly a3, became better defined.

PubMed Disclaimer

Publication types

LinkOut - more resources