Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2009 Mar;53(3):912-7.
doi: 10.1128/AAC.00856-08. Epub 2008 Dec 22.

Association between antimicrobial consumption and resistance in Escherichia coli

Collaborators, Affiliations

Association between antimicrobial consumption and resistance in Escherichia coli

Miika Bergman et al. Antimicrob Agents Chemother. 2009 Mar.

Abstract

During a 9-year study period from 1997 through 2005, the association between antimicrobial resistance rates in Escherichia coli and outpatient antimicrobial consumption was investigated in 20 hospital districts in Finland. A total of 754,293 E. coli isolates, mainly from urine samples, were tested for antimicrobial resistance in 26 clinical microbiology laboratories. The following antimicrobials were studied: ampicillin, amoxicillin-clavulanate, cephalosporins, fluoroquinolones, trimethoprim, trimethoprim-sulfamethoxazole, pivmecillinam, and nitrofurantoin. We applied a protocol used in earlier studies in which the level of antimicrobial consumption over 1 year was compared with the level of resistance in the next year. Statistically significant associations were found for nitrofurantoin use versus nitrofurantoin resistance (P < 0.0001), cephalosporin use versus nitrofurantoin resistance (P = 0.0293), amoxicillin use versus fluoroquinolone resistance (P = 0.0031), and fluoroquinolone use versus ampicillin resistance (P = 0.0046). Interestingly, we found only a few associations between resistance and antimicrobial consumption. The majority of the associations studied were not significant, including the association between fluoroquinolone use and fluoroquinolone resistance.

PubMed Disclaimer

Similar articles

Cited by

References

    1. Bartoloni, A., F. Bartalesi, A. Mantella, E. Dell'Amico, M. Roselli, M. Strohmeyer, H. G. Barahona, V. P. Barron, F. Paradisi, and G. M. Rossolini. 2004. High prevalence of acquired antimicrobial resistance unrelated to heavy antimicrobial consumption. J. Infect. Dis. 189:1291-1294. - PubMed
    1. Bergman, M., S. Huikko, P. Huovinen, P. Paakkari, and H. Seppälä. 2006. Macrolide and azithromycin use are linked to increased macrolide resistance in Streptococcus pneumoniae. Antimicrob. Agents Chemother. 50:3646-3650. - PMC - PubMed
    1. Bergman, M., S. Huikko, M. Pihlajamäki, P. Laippala, E. Palva, P. Huovinen, and H. Seppälä. 2004. Effect of macrolide consumption on erythromycin resistance in Streptococcus pyogenes in Finland in 1997-2001. Clin. Infect. Dis. 38:1251-1256. - PubMed
    1. Colgan, R., J. R. Johnson, M. Kuskowski, and K. Gupta. 2008. Risk factors for trimethoprim-sulfamethoxazole resistance in patients with acute uncomplicated cystitis. Antimicrob. Agents Chemother. 52:846-851. - PMC - PubMed
    1. Enne, V. I., D. M. Livermore, P. Stephens, and L. M. Hall. 2001. Persistence of sulphonamide resistance in Escherichia coli in the UK despite national prescribing restriction. Lancet 357:1325-1328. - PubMed

Publication types

MeSH terms