Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2008:9 Suppl 1:3-14.
doi: 10.2165/0126839-200809001-00002.

The aging eye and the role of L-carnitine and its derivatives

Affiliations
Review

The aging eye and the role of L-carnitine and its derivatives

Nicola Pescosolido et al. Drugs R D. 2008.

Abstract

The majority of ocular pathologies originate from a functional deterioration of intraocular tissues. This age-related deterioration often occurs as a result of changes within the eye. There is growing interest in the role of natural or synthetic compounds, such as carnitine, for blocking, or slowing, the progress of this deterioration. L-carnitine and its derivatives are involved in numerous physiological reactions, including sugar aerobic metabolism, oxidative phosphorylation, fatty acid oxidation and osmosis. While carnitine levels in human ocular tissue are unknown, animal studies indicate that carnitine is differentially distributed within the eye with the highest concentrations reported in the iris, ciliary body and the choroid-retina. In patients with age-related macular degeneration (AMD), acetyl-L-carnitine improved four parameters of visual function, including visual field mean defect, visual acuity, foveal sensitivity and ocular fundus alterations. L-carnitine has also demonstrated antioxidant properties in animal models of oxidative damage. This article reviews the potential use of L-carnitine and its derivatives in age-related ocular pathologies, such as AMD, cataract, glaucoma and dry eye syndrome.

PubMed Disclaimer