In vitro and in vivo evaluation of the surface bioactivity of a calcium phosphate coated magnesium alloy
- PMID: 19111896
- DOI: 10.1016/j.biomaterials.2008.12.001
In vitro and in vivo evaluation of the surface bioactivity of a calcium phosphate coated magnesium alloy
Abstract
Magnesium has shown potential application as a bio-absorbable biomaterial, such as for bone screws and plates. In order to improve the surface bioactivity, a calcium phosphate was coated on a magnesium alloy by a phosphating process (Ca-P coating). The surface characterization showed that a porous and netlike CaHPO(4).2H(2)O layer with small amounts of Mg(2+) and Zn(2+) was formed on the surface of the Mg alloy. Cells L929 showed significantly good adherence and significantly high growth rate and proliferation characteristics on the Ca-P coated magnesium alloy (p<0.05) in in-vitro cell experiments, demonstrating that the surface cytocompatibility of magnesium was significantly improved by the Ca-P coating. In vivo implantations of the Ca-P coated and the naked alloy rods were carried out to investigate the bone response at the early stage. Both routine pathological examination and immunohistochemical analysis demonstrated that the Ca-P coating provided magnesium with a significantly good surface bioactivity (p<0.05) and promoted early bone growth at the implant/bone interface. It was suggested that the Ca-P coating might be an effective method to improve the surface bioactivity of magnesium alloy.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources
Miscellaneous