Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2009 Jan 20;25(2):1028-37.
doi: 10.1021/la802839f.

AFM studies of the effect of temperature and electric field on the structure of a DMPC-cholesterol bilayer supported on a Au(111) electrode surface

Affiliations

AFM studies of the effect of temperature and electric field on the structure of a DMPC-cholesterol bilayer supported on a Au(111) electrode surface

Maohui Chen et al. Langmuir. .

Abstract

Atomic force microscopy (AFM) was used to characterize a phospholipid bilayer composed of 70 mol % 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) and 30 mol % cholesterol, at a Au(111) electrode surface. Results indicate that addition of cholesterol relaxes membrane elastic stress, increases membrane thickness, and reduces defect density. The thickness and thermotropic properties of the mixed DMPC-cholesterol bilayer supported at the gold electrode surface are quite similar to the properties of the mixed membrane in unilamellar vesicles. The stability of the supported membrane at potentials negative to the potential of zero charge E(pzc) was investigated. This study demonstrates that the bilayer supported at the gold electrode surface is stable provided the applied potential (E - E(pzc)) is less than -0.3 V. At larger polarizations, swelling of the membrane is observed. Polarizations larger than -1 V cause electrodewetting of the bilayer from the gold surface. At these negative potentials, the bilayer remains in close proximity to the metal surface, separated from it by a approximately 2 nm thick layer of electrolyte.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources