Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2009;47(6):640-7.
doi: 10.1080/13693780802541518.

In vitro antifungal activities of luliconazole, a new topical imidazole

Affiliations

In vitro antifungal activities of luliconazole, a new topical imidazole

Hiroyasu Koga et al. Med Mycol. 2009.

Abstract

Luliconazole is a topical antifungal drug newly developed in Japan. The present study compares the in vitro antifungal activity of luliconazole against clinically important dermatomycotic fungi with that of other representative antifungal drugs. The reference drugs chosen were five classes of nine topical agents, i.e., allylamine (terbinafine), thiocarbamate (liranaftate), benzylamine (butenafine), morpholine (amorolfine), and azole (ketoconazole, clotrimazole, neticonazole, miconazole and bifonazole). The minimum inhibitory concentrations (MIC) of luliconazole and the reference drugs against Trichophyton spp. (T. rubrum, T. mentagrophytes and T. tonsurans) and Candida albicans were measured by the standardized broth microdilution method. Luliconazole demonstrated greater potency against Trichophyton spp. (MIC range: <or=0.00012-0.002 microg/ml) than the reference drugs, with T. rubrum being the most susceptible to it. Luliconazole was also highly active against Candida albicans (MIC range: 0.031-0.13 microg/ml), proving to be more potent than terbinafine, liranaftate, butenafine, amorolfine, and bifonazole, but less than ketoconazole, clotrimazole, neticonazole, and miconazole. Further, the MIC of luliconazole against Malassezia restricta, an important pathogenic agent involved in seborrhoeic dermatitis, was very low (MIC range: 0.004-0.016 microg/ml) suggesting action comparable to or stronger than that of ketoconazole. These results indicate a possible clinical role for luliconazole with its broad-spectrum antimycotic activity.

PubMed Disclaimer

MeSH terms

LinkOut - more resources