Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2009 Mar;11(3):220-8.
doi: 10.1002/jgm.1287.

Human beta-defensin-3 promotes wound healing in infected diabetic wounds

Affiliations

Human beta-defensin-3 promotes wound healing in infected diabetic wounds

Tobias Hirsch et al. J Gene Med. 2009 Mar.

Abstract

Background: Infected wounds present a major complication in patients with diabetes. Staphylococcus aureus is the most common single isolate in diabetic wounds. Human beta-defensin (hBD)-3 is antimicrobial active and appears to play a key role in the immune response. The present study aimed to analyse the effect of hBD-3 expression in a model of infected diabetic wounds.

Methods: Excisional wounds were created on the backs of Yorkshire pigs and Ad5-CMV-hBD-3 vectors were microseeded. Wounds were inoculated with S. aureus, covered with a polyurethane chamber and analysed for transgene expression, bacterial infection, re-epithelialization, wound contraction, wound fluid production and blood vessel formation.

Results: hBD-3-treated wounds showed a total bacterial load of 2.1 x 10(8) colony-forming units (CFU)/g tissue, versus 1.3 x 10(9) CFU/g tissue for controls (p < 0.001) at day 4. At day 12, no statistical difference could be detected. Re-epithelialization showed 75 +/- 15% wound closure for hBD-3 expressing wounds and 50 +/- 16% for controls (p < 0.01). hBD-3 expression was in the range 15-20 ng/ml of wound fluid during day 1-4. The lower dose of 2 x 10(9) Ad5-CMV-hBD-3 showed no effect, suggesting a dose dependency for hBD-3.

Conclusions: In the present study, we show that hBD-3 expression significantly promotes wound closure in S. aureus infected diabetic wounds in a preclinical large-animal model. Furthermore, a ten-fold reduction of bacterial growth on day 4 was detected. These findings indicate that beta-defensin-3 may play a major role in diabetic wound healing and wound infections.

PubMed Disclaimer

Publication types

MeSH terms