Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 1991 Jun;13(3):152-6.
doi: 10.1016/0141-8130(91)90040-2.

Sequence specific thermal stability of the collagen triple helix

Affiliations
Comparative Study

Sequence specific thermal stability of the collagen triple helix

H P Bächinger et al. Int J Biol Macromol. 1991 Jun.

Abstract

Theoretical calculations of the thermal stability of collagen triple helices using empirical values for the contribution of individual tripeptide units are presented and compared with direct measurements of the thermal stability of various types of collagens. Relative stabilities are assigned to the positions of the tripeptide units in the amino acid sequence along the length of the collagen molecule. The sequence specific relative stabilities of type I and type XI collagens are compared. These offer insight into the reasons for the existence of unfolding intermediates in type XI collagen that are absent in type I collagen. The pattern of relative stabilities calculated for mouse type IV collagen is consistent with experimental results which indicate that the amino terminal region is very stable and that the interruptions cause increased flexibility and independently unfolding domains. Mutations in the triple helical domain of human type I procollagen occurring in brittle bone disease (osteogenesis imperfecta) show varying effects on the thermal stability of the molecule. The sequence specific thermal stability calculations shed some light on why some mutations of cysteine for glycine have greater effects on the thermal stability than others.

PubMed Disclaimer

Publication types

LinkOut - more resources