Control of self-assembly of DNA tubules through integration of gold nanoparticles
- PMID: 19119229
- PMCID: PMC2893555
- DOI: 10.1126/science.1165831
Control of self-assembly of DNA tubules through integration of gold nanoparticles
Abstract
The assembly of nanoparticles into three-dimensional (3D) architectures could allow for greater control of the interactions between these particles or with molecules. DNA tubes are known to form through either self-association of multi-helix DNA bundle structures or closing up of 2D DNA tile lattices. By the attachment of single-stranded DNA to gold nanoparticles, nanotubes of various 3D architectures can form, ranging in shape from stacked rings to single spirals, double spirals, and nested spirals. The nanoparticles are active elements that control the preference for specific tube conformations through size-dependent steric repulsion effects. For example, we can control the tube assembly to favor stacked-ring structures using 10-nanometer gold nanoparticles. Electron tomography revealed a left-handed chirality in the spiral tubes, double-wall tube features, and conformational transitions between tubes.
Figures




Similar articles
-
Nanoscale structure and microscale stiffness of DNA nanotubes.ACS Nano. 2013 Aug 27;7(8):6700-10. doi: 10.1021/nn401362p. Epub 2013 Jul 31. ACS Nano. 2013. PMID: 23879368
-
Programmable Supra-Assembly of a DNA Surface Adapter for Tunable Chiral Directional Self-Assembly of Gold Nanorods.Angew Chem Int Ed Engl. 2017 Nov 13;56(46):14632-14636. doi: 10.1002/anie.201709775. Epub 2017 Oct 18. Angew Chem Int Ed Engl. 2017. PMID: 28971555 Free PMC article.
-
Loading and selective release of cargo in DNA nanotubes with longitudinal variation.Nat Chem. 2010 Apr;2(4):319-28. doi: 10.1038/nchem.575. Epub 2010 Mar 14. Nat Chem. 2010. PMID: 21124515
-
3D Lattice Engineering of Nanoparticles by DNA Shells.Small. 2019 Jun;15(26):e1805401. doi: 10.1002/smll.201805401. Epub 2019 Feb 20. Small. 2019. PMID: 30785664 Review.
-
Dispersions based on noble metal nanoparticles-DNA conjugates.Adv Colloid Interface Sci. 2011 Apr 14;163(2):123-43. doi: 10.1016/j.cis.2011.02.007. Epub 2011 Feb 19. Adv Colloid Interface Sci. 2011. PMID: 21382609 Review.
Cited by
-
A universal way to enrich the nanoparticle lattices with polychrome DNA origami "homologs".Sci Adv. 2022 Nov 25;8(47):eadc9755. doi: 10.1126/sciadv.adc9755. Epub 2022 Nov 23. Sci Adv. 2022. PMID: 36417536 Free PMC article.
-
Concepts and Application of DNA Origami and DNA Self-Assembly: A Systematic Review.Appl Bionics Biomech. 2021 Nov 16;2021:9112407. doi: 10.1155/2021/9112407. eCollection 2021. Appl Bionics Biomech. 2021. PMID: 34824603 Free PMC article. Review.
-
Multilayer DNA origami packed on hexagonal and hybrid lattices.J Am Chem Soc. 2012 Jan 25;134(3):1770-4. doi: 10.1021/ja209719k. Epub 2012 Jan 13. J Am Chem Soc. 2012. PMID: 22187940 Free PMC article.
-
Large Area Patterning of Nanoparticles and Nanostructures: Current Status and Future Prospects.ACS Nano. 2021 Apr 27;15(4):5861-5875. doi: 10.1021/acsnano.0c09999. Epub 2021 Apr 8. ACS Nano. 2021. PMID: 33830726 Free PMC article.
-
Complex shapes self-assembled from single-stranded DNA tiles.Nature. 2012 May 30;485(7400):623-6. doi: 10.1038/nature11075. Nature. 2012. PMID: 22660323 Free PMC article.
References
-
- Simon U. In: Nanoparticles: From Theory to Application. Schmid G, editor. Germany: Wiley-VCH, Weinheim; 2004. pp. 328–362.
-
- Alivisatos AP, et al. Nature. 1996;382:609. - PubMed
-
- Fu A, et al. J. Am. Chem. Soc. 2004;126:10832. - PubMed
-
- Deng Z, Tian Y, Lee S-H, Ribbe AE, Mao C. Angew. Chem. Int. Ed. 2005;117:3648. - PubMed
-
- Le JD, et al. Nano Lett. 2004;4:2343.
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources