Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2008 Nov-Dec;13(6):064020.
doi: 10.1117/1.3028005.

Photoacoustic monitoring of burn healing process in rats

Affiliations
Free article

Photoacoustic monitoring of burn healing process in rats

Kazuya Aizawa et al. J Biomed Opt. 2008 Nov-Dec.
Free article

Abstract

We performed multiwavelength photoacoustic (PA) measurement for extensive deep dermal burns in rats to monitor the healing process of the wounds. The PA signal peak at 532 nm, an isosbestic point for oxyhemoglobin (HbO(2)) and deoxyhemoglobin (HHb), was found to shift to a shallower region of the injured skin tissue with the elapse of time. The results of histological analysis showed that the shift of the PA signal reflected angiogenesis in the wounds. Until 24 h postburn, PA signal amplitude generally increased at all wavelengths. We speculate that this increase in amplitude is associated with dilation of blood vessels within healthy tissue under the injured tissue layer and increased hematocrit value due to development of edema. From 24 to 48 h postburn, the PA signal showed wavelength-dependent behaviors; signal amplitudes at 532, 556, and 576 nm continued to increase, while amplitude at 600 nm, an HHb absorption-dominant wavelength, decreased. This seems to reflect change from shock phase to hyperdynamic state in the rat; in the hyperdynamic state, cardiac output and oxygen consumption increased considerably. These findings show that multiwavelength PA measurement would be useful for monitoring recovery of perfusion and change in local hemodynamics in the healing process of burns.

PubMed Disclaimer

Publication types