Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2009 Jan 14;131(1):332-40.
doi: 10.1021/ja807484b.

Singlet oxygen in a cell: spatially dependent lifetimes and quenching rate constants

Affiliations
Free article

Singlet oxygen in a cell: spatially dependent lifetimes and quenching rate constants

Marina K Kuimova et al. J Am Chem Soc. .
Free article

Abstract

Singlet molecular oxygen, O(2)(a(1)Delta(g)), can be created in a single cell from ground-state oxygen, O(2)(X(3)Sigma(g)(-)), upon focused laser irradiation of an intracellular sensitizer. This cytotoxic species can subsequently be detected by its 1270 nm phosphorescence (a(1)Delta(g) --> X(3)Sigma(g)(-)) with subcellular spatial resolution. The singlet oxygen lifetime determines its diffusion distance and hence the intracellular volume element in which singlet-oxygen-initiated perturbation of the cell occurs. In this study, the time-resolved phosphorescence of singlet oxygen produced by the sensitizers chlorin (Chl) and 5,10,15,20-tetrakis(N-methyl-4-pyridyl)-21H,23H-porphine (TMPyP) was monitored. These molecules localize in different domains of a living cell. The data indicate that (i) the singlet oxygen lifetime and (ii) the rate constant for singlet oxygen quenching by added NaN(3) depend on whether Chl or TMPyP was the photosensitizer. These observations likely reflect differences in the chemical and physical constituency of a given subcellular domain (e.g., spatially dependent oxygen and NaN(3) diffusion coefficients), thereby providing evidence that singlet oxygen responds to the inherent heterogeneity of a cell. Thus, despite a relatively long intracellular lifetime, singlet oxygen does not diffuse a great distance from its site of production. This is a consequence of an apparent intracellular viscosity that is comparatively large.

PubMed Disclaimer

Similar articles

Cited by

Publication types