Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2009 Apr;3(4):430-41.
doi: 10.1038/ismej.2008.125. Epub 2009 Jan 8.

Viral lysis of Phaeocystis pouchetii: implications for algal population dynamics and heterotrophic C, N and P cycling

Affiliations
Free article

Viral lysis of Phaeocystis pouchetii: implications for algal population dynamics and heterotrophic C, N and P cycling

Jakob Haaber et al. ISME J. 2009 Apr.
Free article

Abstract

A model ecosystem with two autotrophic flagellates, Phaeocystis pouchetii and Rhodomonas salina, a virus specific to P. pouchetii (PpV) and bacteria and heterotrophic nanoflagellates was used to investigate effects of viral lysis on algal population dynamics and heterotrophic nitrogen and phosphorus mineralization. Lysis of P. pouchetii by PpV had strong positive effects on bacterial and HNF abundance, and the mass balance of C, N and P suggested an efficient transfer of organic material from P. pouchetii to bacterial and HNF biomass through viral lysis. At the same time, the degradation of P. pouchetii lysates was associated with significant regeneration of inorganic N and P resulting in 148 microg N l(-1) and 7 microg P l(-1), corresponding to 78% and 26% of lysate N and P being mineralized to NH(4)(+) and PO(4)(3-), respectively. These results showed that the turnover of viral lysates in the microbial food web was associated with significant N and P mineralization, supporting the current view that viral lysates can be an important source of inorganic nutrients in marine systems. In the presence of R. salina, the generated NH(4)(+) supported 11% of the observed R. salina growth. Regrowth of virus-resistant P. pouchetii following cell lysis was observed in long-term incubations (150 days), and possibly influenced by nutrient availability and competition from R. salina. The observed impact of viral activity on autotrophic and heterotrophic processes provides direct experimental evidence for virus-driven nutrient generation and emphasizes the potential importance of the viral activity in supporting marine primary production.

PubMed Disclaimer

Publication types

LinkOut - more resources