Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2009 Jan 14;15(2):169-76.
doi: 10.3748/wjg.15.169.

Gastrointestinal tract modelling in health and disease

Affiliations
Review

Gastrointestinal tract modelling in health and disease

Dong-Hua Liao et al. World J Gastroenterol. .

Abstract

The gastrointestinal (GI) tract is the system of organs within multi-cellular animals that takes in food, digests it to extract energy and nutrients, and expels the remaining waste. The various patterns of GI tract function are generated by the integrated behaviour of multiple tissues and cell types. A thorough study of the GI tract requires understanding of the interactions between cells, tissues and gastrointestinal organs in health and disease. This depends on knowledge, not only of numerous cellular ionic current mechanisms and signal transduction pathways, but also of large scale GI tissue structures and the special distribution of the nervous network. A unique way of coping with this explosion in complexity is mathematical and computational modelling; providing a computational framework for the multilevel modelling and simulation of the human gastrointestinal anatomy and physiology. The aim of this review is to describe the current status of biomechanical modelling work of the GI tract in humans and animals, which can be further used to integrate the physiological, anatomical and medical knowledge of the GI system. Such modelling will aid research and ensure that medical professionals benefit, through the provision of relevant and precise information about the patient's condition and GI remodelling in animal disease models. It will also improve the accuracy and efficiency of medical procedures, which could result in reduced cost for diagnosis and treatment.

PubMed Disclaimer

Figures

Figure 1
Figure 1
Schematic diagram of the GI tract.
Figure 2
Figure 2
Disease-induced GI remodeling in animal models.
Figure 3
Figure 3
A reconstructed sigmoid-colon model and the corresponding tension distribution. A: A representative sigmoid colon model with the distension volume of 200 mL. The model with purple colour is the solid model generated directly from the MR images, and the green mesh is the smoothened surface, the comparison between the solid model and smoothened surface indicates that the smoothened model fits well with the original solid model; B: The circumferential curvature distribution on the surface models; C: Tension distribution of the sigmoid colon surface model.
Figure 4
Figure 4
An example of the anatomically based in vitro rat stomach model generated from ultrasonic scanning. A: A representative CT scanning of a cross sectional slice of an in vitro rat stomach; B: The reconstructed gastric model on the basis of the CT scanning on the in vitro rat stomach. The distance between cross sectional slices was 1 mm, the colour change from blue to red means the increase of the stomach length in z direction.
Figure 5
Figure 5
A simplified pouch model for describing the gastric emptying of a patient treated for obesity. A: A representative pouch model of midsized pouch with stoma diameter of 10 mm, B: Volume history in the filling and emptying phases in the mid-sized and large pouch models with stoma diameter of 10 mm. The solid line represents the mid-sized pouch, and the dotted line the large pouch. Circles and triangles represent volume data of the recorded clinical emptying curve for the mid-sized and large pouch. Pouch and stoma are a small fundic cavity and a corresponding narrow outlet between pouch and the rest of the stomach in gastroplasty and gastric bypass procedures for obesity.

References

    1. Berstad A, Hausken T, Gilja OH, Hveem K, Nesje LB, Odegaard S. Ultrasonography of the human stomach. Scand J Gastroenterol Suppl. 1996;220:75–82. - PubMed
    1. Berstad A, Hausken T, Gilja OH, Nesland A, Odegaard S. Imaging studies in dyspepsia. Eur J Surg Suppl. 1998;220:42–49. - PubMed
    1. Frokjaer JB, Liao D, Bergmann A, McMahon BP, Steffensen E, Drewes AM, Gregersen H. Three-dimensional biomechanical properties of the human rectum evaluated with magnetic resonance imaging. Neurogastroenterol Motil. 2005;17:531–540. - PubMed
    1. Frokjaer JB, Liao D, Steffensen E, Dimcevski G, Bergmann A, Drewes AM, Gregersen H. Geometric and mechanosensory properties of the sigmoid colon evaluated with magnetic resonance imaging. Neurogastroenterol Motil. 2007;19:253–262. - PubMed
    1. Gilja OH, Lunding J, Hausken T, Gregersen H. Gastric accommodation assessed by ultrasonography. World J Gastroenterol. 2006;12:2825–2829. - PMC - PubMed

Publication types

MeSH terms

LinkOut - more resources