Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2009 Mar;96(3):121-8.
doi: 10.1016/j.ymgme.2008.11.165. Epub 2009 Jan 10.

Toxicity of peroxisomal C27-bile acid intermediates

Affiliations

Toxicity of peroxisomal C27-bile acid intermediates

Sacha Ferdinandusse et al. Mol Genet Metab. 2009 Mar.

Abstract

Peroxisomes play an important role in bile acid biosynthesis because the last steps of the synthesis pathway are performed by the beta-oxidation system located inside peroxisomes. As a consequence, C(27)-bile acid intermediates accumulate in several peroxisomal disorders. It has been suggested that C(27)-bile acids are especially toxic and contribute to the liver disease associated with peroxisomal disorders. For this reason, we investigated the toxicity of C(27)-bile acids and the underlying mechanisms. We studied the effects of conjugated and unconjugated C(27)-bile acids on cell viability, mitochondrial respiratory chain function and production of oxygen radicals in the rat hepatoma cell line McA-RH7777. Cell viability decreased progressively after incubation with increasing concentrations of different bile acids with dihydroxycholestanoic acid (DHCA) being clearly the most cytotoxic bile acid. In addition, the different bile acids caused a dose-dependent decrease in ATP synthesis by isolated mitochondria oxidizing malate and glutamate. Finally, there was a dose-dependent stimulation of ROS generation in the presence of C(27)-bile acids. In conclusion, our studies showed that C(27)-bile acids are more cytotoxic than mature C(24)-bile acids. In addition, C(27)-bile acids are potent inhibitors of oxidative phosphorylation and enhance mitochondrial ROS production by inhibiting the respiratory chain.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources