Variable stretch pattern enhances surfactant secretion in alveolar type II cells in culture
- PMID: 19136581
- PMCID: PMC2670764
- DOI: 10.1152/ajplung.90454.2008
Variable stretch pattern enhances surfactant secretion in alveolar type II cells in culture
Abstract
Secretion of pulmonary surfactant that maintains low surface tension within the lung is primarily mediated by mechanical stretching of alveolar epithelial type II (AEII) cells. We have shown that guinea pigs ventilated with random variations in frequency and tidal volume had significantly larger pools of surfactant in the lung than animals ventilated in a monotonous manner. Here, we test the hypothesis that variable stretch patterns imparted on the AEII cells results in enhanced surfactant secretion. AEII cells isolated from rat lungs were exposed to equibiaxial strains of 12.5, 25, or 50% change in surface area (DeltaSA) at 3 cycles/min for 15, 30, or 60 min. (3)H-labeled phosphatidylcholine release and cell viability were measured 60 min following the onset of stretch. Whereas secretion increased following 15-min stretch at 50% DeltaSA and 30-min stretch at 12.5% DeltaSA, 60 min of cyclic stretch diminished surfactant secretion regardless of strain. When cells were stretched using a variable strain profile in which the amplitude of each stretch was randomly pulled from a uniform distribution, surfactant secretion was enhanced both at 25 and 50% mean DeltaSA with no additional cell injury. Furthermore, at 50% mean DeltaSA, there was an optimum level of variability that maximized secretion implying that mechanotransduction in these cells exhibits a phenomenon similar to stochastic resonance. These results suggest that application of variable stretch may enhance surfactant secretion, possibly reducing the risk of ventilator-induced lung injury. Variable stretch-induced mechanotransduction may also have implications for other areas of mechanobiology.
Figures
References
-
- Arold SP, Mora R, Lutchen KR, Ingenito EP, Suki B. Variable tidal volume ventilation improves lung mechanics and gas exchange in a rodent model of acute lung injury. Am J Respir Crit Care Med 165: 366–371, 2002. - PubMed
-
- Arold SP, Suki B, Alencar AM, Lutchen KR, Ingenito EP. Variable ventilation induces endogenous surfactant release in normal guinea pigs. Am J Physiol Lung Cell Mol Physiol 285: L370–L375, 2003. - PubMed
-
- Arold SP, Wong JY, Suki B. Design of a new stretching apparatus and the effects of cyclic strain and substratum on mouse lung epithelial-12 cells. Ann Biomed Eng 35: 1156–1164, 2007. - PubMed
-
- Bellardine CL, Hoffman AM, Tsai L, Ingenito EP, Arold SP, Lutchen KR, Suki B. Comparison of variable and conventional ventilation in a sheep saline lavage lung injury model. Crit Care Med 34: 439–445, 2006. - PubMed
-
- Bezrukov SM, Vodyanoy I. Noise-induced enhancement of signal transduction across voltage-dependent ion channels. Nature 378: 362–364, 1995. - PubMed
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources
Medical
