Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2009;181(3):532-52.
doi: 10.1111/j.1469-8137.2008.02705.x. Epub 2008 Dec 18.

Agriculture and the new challenges for photosynthesis research

Affiliations
Free article
Review

Agriculture and the new challenges for photosynthesis research

E H Murchie et al. New Phytol. 2009.
Free article

Abstract

A rising human population and changing patterns of land use mean that world food production rates will need to be increased by at least 50% by 2050, a massive rise in harvestable yield per hectare of the major crops such as rice (Oryza sativa) and wheat (Triticum aestivum). Combinations of breeding for improved morphology-related traits such as harvest index and increased inputs of water and fertilizer, which have sustained yield increases since the 1960s, will be neither sufficient nor sustainable. An important limiting factor will be the capacity to produce sufficient biomass during favourable growing periods. Here we analyse this problem in the context of increasing the efficiency of conversion of solar energy into biomass, that is, leaf and canopy photosynthesis. Focussing on crops carrying out C3 photosynthesis, we analyse the evidence for 'losses' in the process of conversion of solar energy into crop biomass and we explore novel mechanisms of improving biomass production rates, which have arisen from recent research into the fundamental primary processes of photosynthesis and carbohydrate metabolism. We show that there are several lines of evidence that these processes are not fully optimized for maximum yield. We put forward the hypothesis that the chloroplast itself should be given greater prominence as a sensor, processor and integrator of highly variable environmental signals to allow a more efficient transduction of energy supply into biomass production.

PubMed Disclaimer

LinkOut - more resources