Role of vitamin D receptor in the antiproliferative effects of calcitriol in tumor-derived endothelial cells and tumor angiogenesis in vivo
- PMID: 19141646
- PMCID: PMC2752059
- DOI: 10.1158/0008-5472.CAN-08-2307
Role of vitamin D receptor in the antiproliferative effects of calcitriol in tumor-derived endothelial cells and tumor angiogenesis in vivo
Abstract
Calcitriol (1,25-dihydroxycholecalciferol), the major active form of vitamin D, is antiproliferative in tumor cells and tumor-derived endothelial cells (TDEC). These actions of calcitriol are mediated at least in part by vitamin D receptor (VDR), which is expressed in many tissues including endothelial cells. To investigate the role of VDR in calcitriol effects on tumor vasculature, we established TRAMP-2 tumors subcutaneously into either VDR wild-type (WT) or knockout (KO) mice. Within 30 days post-inoculation, tumors in KO mice were larger than those in WT (P < 0.001). TDEC from WT expressed VDR and were able to transactivate a reporter gene whereas TDEC from KO mice were not. Treatment with calcitriol resulted in growth inhibition in TDEC expressing VDR. However, TDEC from KO mice were relatively resistant, suggesting that calcitriol-mediated growth inhibition on TDEC is VDR-dependent. Further analysis of the TRAMP-C2 tumor sections revealed that the vessels in KO mice were enlarged and had less pericyte coverage compared with WT (P < 0.001). Contrast-enhanced magnetic resonance imaging showed an increase in vascular volume of TRAMP tumors grown in VDR KO mice compared with WT mice (P < 0.001) and FITC-dextran permeability assay suggested a higher extent of vascular leakage in tumors from KO mice. Using ELISA and Western blot analysis, there was an increase of hypoxia-inducible factor-1alpha, vascular endothelial growth factor, angiopoietin 1, and platelet-derived growth factor-BB levels observed in tumors from KO mice. These results indicate that calcitriol-mediated antiproliferative effects on TDEC are VDR-dependent and loss of VDR can lead to abnormal tumor angiogenesis.
Figures




References
-
- van den Bemd GJ, Pols HA, van Leeuwen JP. Anti-tumor effects of 1,25-dihydroxyvitamin D3 and vitamin D analogs. Curr Pharm Des. 2000;6:717–732. - PubMed
-
- Johnson CS, Muindi JR, Hershberger PA, Trump DL. The antitumor efficacy of calcitriol: preclinical studies. Anticancer Res. 2006;26:2543–2549. - PubMed
-
- Koeffler HP, Hirji K, Itri L. 1,25-Dihydroxyvitamin D3: in vivo and in vitro effects on human preleukemic and leukemic cells. Cancer Treat Rep. 1985;69:1399–1407. - PubMed
-
- Hershberger PA, Modzelewski RA, Shurin ZR, Rueger RM, Trump DL, Johnson CS. 1,25-Dihydroxycholecalciferol (1,25-D3) inhibits the growth of squamous cell carcinoma and down-modulates p21(Waf1/Cip1) in vitro and in vivo. Cancer Res. 1999;59:2644–2649. - PubMed
-
- Lokeshwar BL, Schwartz GG, Selzer MG, et al. Inhibition of prostate cancer metastasis in vivo: a comparison of 1,23-dihydroxyvitamin D (calcitriol) and EB1089. Cancer Epidemiol Biomarkers Prev. 1999;8:241–248. - PubMed
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources
Medical
Molecular Biology Databases
Research Materials
Miscellaneous