Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2009 Feb;37(Pt 1):58-64.
doi: 10.1042/BST0370058.

SulfoSYS (Sulfolobus Systems Biology): towards a silicon cell model for the central carbohydrate metabolism of the archaeon Sulfolobus solfataricus under temperature variation

Affiliations

SulfoSYS (Sulfolobus Systems Biology): towards a silicon cell model for the central carbohydrate metabolism of the archaeon Sulfolobus solfataricus under temperature variation

Sonja-Verena Albers et al. Biochem Soc Trans. 2009 Feb.

Abstract

SulfoSYS (Sulfolobus Systems Biology) focuses on the study of the CCM (central carbohydrate metabolism) of Sulfolobus solfataricus and its regulation under temperature variation at the systems level. In Archaea, carbohydrates are metabolized by modifications of the classical pathways known from Bacteria or Eukarya, e.g. the unusual branched ED (Entner-Doudoroff) pathway, which is utilized for glucose degradation in S. solfataricus. This archaeal model organism of choice is a thermoacidophilic crenarchaeon that optimally grows at 80 degrees C (60-92 degrees C) and pH 2-4. In general, life at high temperature requires very efficient adaptation to temperature changes, which is most difficult to deal with for organisms, and it is unclear how biological networks can withstand and respond to such changes. This integrative project combines genomic, transcriptomic, proteomic and metabolomic, as well as kinetic and biochemical information. The final goal of SulfoSYS is the construction of a silicon cell model for this part of the living cell that will enable computation of the CCM network. In the present paper, we report on one of the first archaeal systems biology projects.

PubMed Disclaimer

Publication types

LinkOut - more resources