Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1991;57(2-3):100-4.
doi: 10.1159/000133122.

Oligonucleotide-primed in situ DNA synthesis (PRINS): a method for chromosome mapping, banding, and investigation of sequence organization

Affiliations

Oligonucleotide-primed in situ DNA synthesis (PRINS): a method for chromosome mapping, banding, and investigation of sequence organization

J Gosden et al. Cytogenet Cell Genet. 1991.

Abstract

Oligonucleotides were annealed to complementary sequences in fixed human metaphase chromosomes and extended with DNA polymerase. The newly synthesized fragments were labeled by incorporating bio-11-dUTP instead of TTP, and the sites of synthesis were detected by immunocytochemistry, using fluorochromes as the reporter molecules. We have obtained clear localization with oligonucleotides from alphoid (centromeric sequences), simple sequence (satellite) DNAs, a variety of Alu-dispersed repeated sequences, and oligonucleotides derived from the Tetrahymena and Trypanosoma telomere-specific sequences. The simple sequence and alphoid oligonucleotides gave results at least comparable to those obtained using the whole molecule as a probe for in situ hybridization, whereas the Alu oligonucleotides produced a diversity of results which depended on the absolute length and location of the oligonucleotide within the Alu sequence. The telomere-specific oligomers also produced a variety of results. The G-rich Trypanosoma oligomer and its complementary C-rich sequence produced strong telomeric signals and some interstitial signals on mouse chromosomes, but only weak telomeric signals on human chromosomes. The G-rich Tetrahymena oligomer produced detectable telomeric signals on human chromosomes. The technique appears to be a valuable extension of present tools for mapping and examining the organization of DNA sequences within chromosomes.

PubMed Disclaimer

Publication types

LinkOut - more resources