Strain amplification and integrin based signaling in osteocytes
- PMID: 19147963
- PMCID: PMC3357003
Strain amplification and integrin based signaling in osteocytes
Abstract
Recent morphological studies have suggested that osteocyte processes are directly attached at discrete locations along the canalicular wall by beta3 integrins at the apex of infrequent, previously unrecognized, canalicular projections. This discovery has led to a new paradigm for the initiation of intracellular signaling, which provides a possible long sought after molecular mechanism for the initiation of intracellular signaling in bone cells. The quantitative feasibility of this hypothesis is explored with a detailed theoretical model, which predicts that axial strains due to the sliding of actin microfilaments about the fixed integrin attachments are in order of magnitude larger than the radial strains in the previously proposed strain amplification theory and two orders of magnitude greater than whole tissue strains.
Conflict of interest statement
The authors have no conflict of interest.
Figures
References
-
- You J, Yellowley CE, Donahue HJ, Zhang Y, Chen Q, Jacobs CR. Substrate deformation levels associated with routine physical activity are less stimulatory to bone cells relative to loading-induced oscillatory fluid flow. J Biomech Eng. 2000;122:387–93. - PubMed
-
- Fritton SP, McLeod KJ, Rubin CT. Quantifying the strain history of bone: spatial uniformity and self-similarity of low-magnitude strains. J Biomech. 2000;33:317–25. - PubMed
-
- You L, Cowin SC, Schaffler MB, Weinbaum S. A model for strain amplification in the actin cytoskeleton of osteocytes due to fluid drag on pericellular matrix. J Biomech. 2001;34:1375–86. - PubMed
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Miscellaneous