Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2009 May;75(5):390-404.
doi: 10.1002/cyto.a.20704.

A phosphatidylcholine-BODIPY 581/591 conjugate allows mapping of oxidative stress in P. falciparum-infected erythrocytes

Affiliations
Free article

A phosphatidylcholine-BODIPY 581/591 conjugate allows mapping of oxidative stress in P. falciparum-infected erythrocytes

Ying Fu et al. Cytometry A. 2009 May.
Free article

Abstract

The chromophore, BODIPY 581/591, has an extended conjugated system that reacts with oxygen centered-radicals leading to changes in its spectral characteristics. Fatty acid-conjugated BODIPY 581/591 transfers readily between membrane bilayers and can be used as a sensor of oxidative stress in cell populations. We report here the use of a phosphatidylcholine (PC) derivative of BODIPY 581/591, which transfers much less rapidly between membranes. This allows the analysis of oxidative stress in individual cells and in different compartments within cells. Quantitative imaging and flow cytometry were used to measure the ratio of fully conjugated to oxidized probe in model systems and in Plasmodium falciparum-infected erythrocytes. We observed an increase in the oxidation of the parasite-associated BODIPY 581/591-PC as the intraerythrocytic parasite matures. By contrast, BODIPY 581/591-PC associated with the erythrocyte membrane experiences a low level of oxidation even in the later stages of parasite development. Treatment with a pro-oxidant compound caused increased oxidation of the probe in the parasite compartment, but less so in the host cell membrane. Conversely, treatment with ferricyanide increases oxidation of the probe in the erythrocyte cell membrane but does not inhibit parasite growth. Chromatographic analysis of the lipids in infected erythrocytes shows no evidence for loss of alpha-tocopherol or the accumulation of lipid hydroperoxides indicating that, despite the increased oxidative stress, the parasite membranes remain protected from substantial lipid oxidation. We have established BODIPY 581/591-PC as a useful probe of the spatial distribution of oxidative stress in P. falciparum-infected erythrocytes; however, the probe appears to be more sensitive to oxidative damage than endogenous lipids.

PubMed Disclaimer

Publication types

LinkOut - more resources