Structure-guided Mutational Analysis of the Nucleotidyltransferase Domain of Escherichia coli DNA Ligase (LigA)
- PMID: 19150981
- PMCID: PMC2659207
- DOI: 10.1074/jbc.M808476200
Structure-guided Mutational Analysis of the Nucleotidyltransferase Domain of Escherichia coli DNA Ligase (LigA)
Abstract
NAD(+)-dependent DNA ligases (LigA) are ubiquitous in bacteria, where they are essential for growth and present attractive targets for antimicrobial drug discovery. LigA has a distinctive modular structure in which a nucleotidyltransferase catalytic domain is flanked by an upstream NMN-binding module and by downstream OB-fold, zinc finger, helix-hairpin-helix, and BRCT domains. Here we conducted a structure-function analysis of the nucleotidyltransferase domain of Escherichia coli LigA, guided by the crystal structure of the LigA-DNA-adenylate intermediate. We tested the effects of 29 alanine and conservative mutations at 15 amino acids on ligase activity in vitro and in vivo. We thereby identified essential functional groups that coordinate the reactive phosphates (Arg(136)), contact the AMP adenine (Lys(290)), engage the phosphodiester backbone flanking the nick (Arg(218), Arg(308), Arg(97) plus Arg(101)), or stabilize the active domain fold (Arg(171)). Finer analysis of the mutational effects revealed step-specific functions for Arg(136), which is essential for the reaction of LigA with NAD(+) to form the covalent ligase-AMP intermediate (step 1) and for the transfer of AMP to the nick 5'-PO(4) to form the DNA-adenylate intermediate (step 2) but is dispensable for phosphodiester formation at a preadenylylated nick (step 3).
Figures






Similar articles
-
Structure-guided mutational analysis of the nucleotidyltransferase domain of Escherichia coli NAD+-dependent DNA ligase (LigA).J Biol Chem. 2005 Apr 1;280(13):12137-44. doi: 10.1074/jbc.M413685200. Epub 2005 Jan 24. J Biol Chem. 2005. PMID: 15671015
-
Structure-guided mutational analysis of the OB, HhH, and BRCT domains of Escherichia coli DNA ligase.J Biol Chem. 2008 Aug 22;283(34):23343-52. doi: 10.1074/jbc.M802945200. Epub 2008 May 30. J Biol Chem. 2008. PMID: 18515356 Free PMC article.
-
Analysis of ligation and DNA binding by Escherichia coli DNA ligase (LigA).Biochim Biophys Acta. 2005 May 20;1749(1):113-22. doi: 10.1016/j.bbapap.2005.03.003. Biochim Biophys Acta. 2005. PMID: 15848142
-
DNA and RNA ligases: structural variations and shared mechanisms.Curr Opin Struct Biol. 2008 Feb;18(1):96-105. doi: 10.1016/j.sbi.2007.12.008. Epub 2008 Feb 8. Curr Opin Struct Biol. 2008. PMID: 18262407 Review.
-
DNA ligases: structure, reaction mechanism, and function.Chem Rev. 2006 Feb;106(2):687-99. doi: 10.1021/cr040498d. Chem Rev. 2006. PMID: 16464020 Review. No abstract available.
Cited by
-
Selectivity of Enzymatic Conversion of Oligonucleotide Probes during Nucleotide Polymorphism Analysis of DNA.Acta Naturae. 2010 Apr;2(1):36-53. Acta Naturae. 2010. PMID: 22649627 Free PMC article.
-
Biochemical and Structural Characterisation of DNA Ligases from Bacteria and Archaea.Biosci Rep. 2016 Oct 6;36(5):00391. doi: 10.1042/BSR20160003. Biosci Rep. 2016. PMID: 27582505 Free PMC article.
-
Two-metal versus one-metal mechanisms of lysine adenylylation by ATP-dependent and NAD+-dependent polynucleotide ligases.Proc Natl Acad Sci U S A. 2017 Mar 7;114(10):2592-2597. doi: 10.1073/pnas.1619220114. Epub 2017 Feb 21. Proc Natl Acad Sci U S A. 2017. PMID: 28223499 Free PMC article.
-
Mechanistic assessment of DNA ligase as an antibacterial target in Staphylococcus aureus.Antimicrob Agents Chemother. 2012 Aug;56(8):4095-102. doi: 10.1128/AAC.00215-12. Epub 2012 May 14. Antimicrob Agents Chemother. 2012. PMID: 22585221 Free PMC article.
-
Identification of Novel Inhibitors of Escherichia coli DNA Ligase (LigA).Molecules. 2021 Apr 25;26(9):2508. doi: 10.3390/molecules26092508. Molecules. 2021. PMID: 33923034 Free PMC article.
References
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Miscellaneous