Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2009 Apr;30(12):2259-69.
doi: 10.1016/j.biomaterials.2008.12.072. Epub 2009 Jan 18.

The control of anchorage-dependent cell behavior within a hydrogel/microcarrier system in an osteogenic model

Affiliations

The control of anchorage-dependent cell behavior within a hydrogel/microcarrier system in an osteogenic model

Chunming Wang et al. Biomaterials. 2009 Apr.

Abstract

The use of injectable hydrogels for tissue engineering purposes such as bone regeneration has been hampered by the mass depletion of cells after encapsulation, due to the lack of a proper interface between hydrogel matrices and osteo-progenitor cells. Efforts to graft bioactive molecules as cell attachment moieties have achieved limited success. In this study, we devised a solution to promote cellular focal adhesion within hydrogels, and elicit the mechanism behind cellular survival/death therein. We found that the fulfillment of ligation between cellular integrins and extracellular ligands, instead of the expression of integrins per se, is essential to avoid apoptosis in gel-encapsulated anchorage-dependent cells (ADCs). Absence of such ligation brought about mass cell death in our osteogenic model with osteoblasts (as representative of ADCs) and failure of osteogenic commitment of mesenchymal stem cells (as representative of anchorage-dependent progenitors). We have designed a gel-based composite system that works as a suspension of injectable cell-laden microcarriers in hydrogel, as compared to the conventional cell-suspended hydrogels. Injectable microscopic anchors (microcarriers) not only provide platforms for cellular focal adhesion but also facilitate the cells to overcome gel enlacement and fully spread out into their natural morphology. Further in vitro and in vivo osteogenic investigations show the composites to be a competent potential injectable vehicle for the conveyance of ADCs and regenerations of bone and other tissues.

PubMed Disclaimer

Publication types

LinkOut - more resources