Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2009;20(2):235-51.
doi: 10.1163/156856209X404514.

Polyacrylamide-grafted-alginate-based pH-sensitive hydrogel beads for delivery of ketoprofen to the intestine: in vitro and in vivo evaluation

Affiliations

Polyacrylamide-grafted-alginate-based pH-sensitive hydrogel beads for delivery of ketoprofen to the intestine: in vitro and in vivo evaluation

Raghavendra V Kulkarni et al. J Biomater Sci Polym Ed. 2009.

Abstract

A pH-sensitive graft co-polymer of polyacrylamide (PAAm) and sodium alginate (SA) was synthesized by free radical polymerization under a nitrogen atmosphere followed by alkaline hydrolysis. The co-polymer was characterized by Fourier transform infrared (FT-IR) spectroscopy, elemental analysis and thermogravimetric analysis (TGA). Ketoprofen-loaded graft co-polymer beads were prepared by ionotropic gelation/covalent cross-linking. The beads were characterized by swelling studies, differential scanning calorimetry (DSC) and scanning electron microscopy (SEM). A pulsatile swelling study indicated that the co-polymer exhibits considerable pH-sensitive behavior. Release of ketoprofen was significantly increased when the pH of the medium was changed from acidic to alkaline. Stomach histopathology of albino rats indicated that the beads were able to retard the release of the drug in the stomach, and gastric side-effects like ulceration, hemorrhage and erosion of gastric mucosa were diminished when the drug was entrapped into PAAm-g-SA-based pH-sensitive hydrogel beads.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources