Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 2009 Mar 15;77(6):1064-73.
doi: 10.1016/j.bcp.2008.12.006. Epub 2008 Dec 27.

Nitric oxide inhibits insulin-degrading enzyme activity and function through S-nitrosylation

Affiliations
Comparative Study

Nitric oxide inhibits insulin-degrading enzyme activity and function through S-nitrosylation

Crystal M Cordes et al. Biochem Pharmacol. .

Abstract

Insulin-degrading enzyme (IDE) is responsible for the degradation of a number of hormones and peptides, including insulin and amyloid beta (Abeta). Genetic studies have linked IDE to both type 2 diabetes and Alzheimer's disease. Despite its potential importance in these diseases, relatively little is known about the factors that regulate the activity and function of IDE. Protein S-nitrosylation is now recognized as a redox-dependent, cGMP-independent signaling component that mediates a variety of actions of nitric oxide (NO). Here we describe a mechanism of inactivation of IDE by NO. NO donors decreased both insulin and Abeta degrading activities of IDE. Insulin-degrading activity appeared more sensitive to NO inhibition than Abeta degrading activity. IDE-mediated regulation of proteasome activity was affected similarly to insulin-degrading activity. We found IDE to be nitrosylated in the presence of NO donors compared to that of untreated enzyme and the control compound. S-nitrosylation of IDE enzyme did not affect the insulin degradation products produced by the enzyme, nor did NO affect insulin binding to IDE as determined by cross-linking studies. Kinetic analysis of NO inhibition of IDE confirmed that the inhibition was noncompetitive. These data suggest a possible reversible mechanism by which inhibition of IDE under conditions of nitrosative stress could contribute to pathological disease conditions such as Alzheimer's disease and type 2 diabetes.

PubMed Disclaimer

Publication types

LinkOut - more resources