Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2009 Mar 2;10(4):607-16.
doi: 10.1002/cbic.200800546.

The structural diversity of acidic lipopeptide antibiotics

Affiliations
Review

The structural diversity of acidic lipopeptide antibiotics

Matthias Strieker et al. Chembiochem. .

Abstract

Acidic lipopeptide antibiotics are a new class of potent antibiotics, which includes daptomycin, A54145, calcium-dependent antibiotics (CDAs), friulimicins/amphomycins, laspartomycin/glycinocins and others. The importance of this novel class is exemplified by the success story of the clinically approved daptomycin, which is used for the treatment of skin infections and bacteremia caused by multidrug-resistant bacteria, including methicillin-resistant Staphylococcus aureus and vancomycin-resistant enterococci. The potency of acidic lipopeptides is inherent in their chemical structure. The nonribosomally synthesized peptide cores consist of eleven to 13 amino acids, which are rigidified by the formation of a ten-membered ring. An N-terminal fatty acid, which facilitates insertion into the lipid bilayer of bacterial membranes, completes the structure. All these antibiotics contain multiple nonproteinogenic amino acids as well as different lipid tails; this yields remarkable structural diversity. This review summarizes the observed structural variety through a detailed description of the composition of the acidic lipopeptides. Furthermore, engineering approaches towards novel lipopeptides are presented. Recent discoveries in the field of tailoring enzymes, which enable structural plurality mainly by amino and fatty acid precursor biosynthesis, are highlighted.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources