Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1991 Oct;114(1):53-65.
doi: 10.1016/0014-4886(91)90084-p.

Trajectory of redirected corticospinal axons after unilateral lesion of the sensorimotor cortex in neonatal rat; a phaseolus vulgaris-leucoagglutinin (PHA-L) tracing study

Affiliations

Trajectory of redirected corticospinal axons after unilateral lesion of the sensorimotor cortex in neonatal rat; a phaseolus vulgaris-leucoagglutinin (PHA-L) tracing study

E M Rouiller et al. Exp Neurol. 1991 Oct.

Abstract

The corticospinal neurons of the rat project almost exclusively to the contralateral spinal cord. Retrograde and anterograde tracing experiments showed that only about 2-4% of the corticospinal neurons of the sensorimotor cortex project to the ipsilateral spinal cord in the normal rat. The large majority of corticospinal axons (more than 90%) travel at spinal level at the base of the contralateral dorsal funiculus; in addition a few axons run in the contralateral lateral funiculus and at the base of the dorsal horn. The undecussated axons run in the ipsilateral dorsal (about 1-2%) and ventral (about 1-2%) funiculi. The rearrangement of the corticospinal projections was studied with various tracing methods in rats subjected to unilateral lesion of the sensorimotor cortex at Postnatal Day 2 to 4. Spinal injections of the tracer WGA-HRP that were restricted to the side opposite to the cortical lesion showed a significant increase of retrogradely labeled corticospinal neurons in the intact cortex as compared to the proportion of ipsilateral projections in control experiments. This was consistent with an increased density of anterogradely labeled corticospinal terminals in the spinal cord ipsilateral to an injection of WGA-HRP in the motor cortex opposite to neonatal lesion, in comparison to normal rats. The trajectory of these "aberrant" ipsilateral corticospinal projections resulting from the neonatal lesion of the opposite sensorimotor cortex was analyzed by means of the anterograde tracer phaseolus vulgaris-leucoagglutinin (PHA-L), injected in the motor cortex. These data indicated that decussated corticospinal axons recross at spinal levels, close to their terminal zone, where they appear to ramify and terminate in the spinal gray including the motoneurons. Such recrossing axons thus represent one new possible mechanism, among other previously reported ones, contributing to the increase of ipsilateral corticospinal projections in rats subjected to neonatal cortical lesion.

PubMed Disclaimer

Similar articles

Cited by

Publication types