Antagonistic roles of the N-terminal domain of prion protein to doppel
- PMID: 19158506
- PMCID: PMC2634528
- DOI: 10.4161/pri.2.3.7436
Antagonistic roles of the N-terminal domain of prion protein to doppel
Abstract
Prion protein (PrP)-like molecule, doppel (Dpl), is neurotoxic in mice, causing Purkinje cell degeneration. In contrast, PrP antagonizes Dpl in trans, rescuing mice from Purkinje cell death. We have previously shown that PrP with deletion of the N-terminal residues 23-88 failed to neutralize Dpl in mice, indicating that the N-terminal region, particularly that including residues 23-88, may have trans-protective activity against Dpl. Interestingly, PrP with deletion elongated to residues 121 or 134 in the N-terminal region was shown to be similarly neurotoxic to Dpl, indicating that the PrP C-terminal region may have toxicity which is normally prevented by the N-terminal domain in cis. We recently investigated further roles for the N-terminal region of PrP in antagonistic interactions with Dpl by producing three different types of transgenic mice. These mice expressed PrP with deletion of residues 25-50 or 51-90, or a fusion protein of the N-terminal region of PrP with Dpl. Here, we discuss a possible model for the antagonistic interaction between PrP and Dpl.
Figures


References
-
- Stahl N, Borchelt DR, Hsiao K, Prusiner SB. Scrapie prion protein contains a phosphatidylinositol glycolipid. Cell. 1987;51:229–240. - PubMed
-
- Prusiner SB. Molecular biology of prion diseases. Science. 1991;252:1515–1522. - PubMed
-
- Oesch B, Westaway D, Walchli M, McKinley MP, Kent SB, Aebersold R, et al. A cellular gene encodes scrapie PrP 27–30 protein. Cell. 1985;40:735–746. - PubMed
-
- Moore RC, Lee IY, Silverman GL, Harrison PM, Strome R, Heinrich C, et al. Ataxia in prion protein (PrP)-deficient mice is associated with upregulation of the novel PrP-like protein doppel. J Mol Biol. 1999;292:797–817. - PubMed
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Research Materials