Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1977 Apr;201(1):171-83.

The influence of ketamine on inotropic and chronotropic responsiveness of heart muscle

  • PMID: 191593

The influence of ketamine on inotropic and chronotropic responsiveness of heart muscle

H R Adams et al. J Pharmacol Exp Ther. 1977 Apr.

Abstract

The influence of ketamine on the inotropic and chronotropic responsiveness of heart muscle was examined in spontaneously beating right atrial preparations and in electrically driven left atrial preparations of guinea pigs. Ketamine (2.63 X 10(-5) to 4.2 X 10(-4) M) decreased heart rate of right atria and decreased contractile tension and its maximum rate of increase in both right and left atrial preparations (right atria greater than left atria). Ketamine did not prevent the heart rate increase produced by norepinephrine (NE; 1 X 10(-8) to 1 X 10(-4) M) in right atria; however, the maximum heart rate was consistently lower in ketamine-treated than in control muscles even after exposure to NE. Although contractile tension was decreased by ketamine, the maximum inotropic response to NE was consistently greater in ketamine-treated atria than in control atria. An inhibitor of the slow Ca++ current in heart muscle, D600, depressed the contractile effects of NE but did not prevent the positive inotropic interaction of ketamine and NE. Ketamine similarly enhanced the inotropic responses to norepinephrine (1 X 10(-6) M), epinephrine (1 X 10(-6) M), isoproterenol (1 X 10(-7) M) and dibutyryl cyclic adenosine 3':5'-monophosphate (AMP; 4 X 10(-3) M) in left atria electrically paced at a constant frequency of contraction of 1 Hz; however, ketamine inhibited the positive inotropic response to increased frequency of stimulation (0.1-3.0 Hz) and to ouabain (3 X 10(-7) M). These findings demonstrate that ketamine can exert a selective positive inotropic influence in heart muscle independent of heart rate or direct or reflexogenic autonomic nervous system changes, and suggest that this activity could in some way be associated with an alteration of the intracellular disposition of cyclic AMP.

PubMed Disclaimer

Similar articles

Cited by

Publication types