Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2009 Feb 25;27(9):1323-32.
doi: 10.1016/j.vaccine.2008.12.056. Epub 2009 Jan 20.

Identification of novel vaccine candidates for Chagas' disease by immunization with sequential fractions of a trypomastigote cDNA expression library

Affiliations

Identification of novel vaccine candidates for Chagas' disease by immunization with sequential fractions of a trypomastigote cDNA expression library

Valeria Tekiel et al. Vaccine. .

Abstract

The protozoan Trypanosoma cruzi is the etiological agent of Chagas' disease, a major chronic infection in Latin America. Currently, there are neither effective drugs nor vaccines for the treatment or prevention of the disease. Several T. cruzi surface antigens are being tested as vaccines but none of them proved to be completely protective, probably because they represent only a limited repertoire of all the possible T. cruzi target molecules. Taking into account that the trypomastigote stage of the parasite must express genes that allow the parasite to disseminate into the tissues and invade cells, we reasoned that genes preferentially expressed in trypomastigotes represent potential targets for immunization. Here we screened an epimastigote-subtracted trypomastigote cDNA expression library by genetic immunization, in order to find new vaccine candidates for Chagas' disease. After two rounds of immunization and challenge with trypomastigotes, this approach led to the identification of a pool of 28 gene fragments that improved in vivo protection. Sequence analysis of these putative candidates revealed that 19 out of 28 (67.85%) of the genes were hypothetical proteins or unannotated T. cruzi open reading frames, which certainly would not have been identified by other methods of vaccine discovery.

PubMed Disclaimer

Publication types

LinkOut - more resources