Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2009 Mar;40(3):888-94.
doi: 10.1161/STROKEAHA.108.519207. Epub 2009 Jan 22.

Should stroke trials adjust functional outcome for baseline prognostic factors?

Collaborators, Affiliations

Should stroke trials adjust functional outcome for baseline prognostic factors?

Optimising the Analysis of Stroke Trials (OAST) Collaboration et al. Stroke. 2009 Mar.

Abstract

Background and purpose: Many stroke trials have provided neutral results. Suboptimal statistical analyses may be failing to detect effective interventions. Adjusting outcomes for baseline prognostic factors in the analysis may improve the efficiency of analysis of outcomes.

Methods: Data from 23 stroke trials (25 674 patients) assessing functional outcome were included. The prognostic variables considered were age, sex, and baseline severity. Unadjusted and adjusted ordinal logistic regression models were compared using simulated data from each trial (10 000 simulations per trial). Three levels of treatment effect were assessed with ORs of 0.95, 0.74, and 0.57. The reduction in sample size gained from using the adjusted models, as compared with an unadjusted model, was then calculated as a reflection of the increase in statistical power.

Results: Adjusting outcome for baseline factors led to a reduction in sample size, which was similar across all 3 treatment effects (median percentage reduction, interquartile range): OR=0.95: 35.3% (21.0 to 42.1); OR=0.74: 38.4% (29.4 to 42.7); and OR=0.57: 38.4% (27.4 to 42.2). As the treatment effect increased, the proportion of simulations in which the treatment effect for the adjusted model was greater than for the unadjusted model also increased.

Conclusions: Adjusting for prognostic factors in stroke trials can reduce sample size by at least 20% to 30% (the lower interquartile range) for a given power. Conversely, trialists may want to power for an unadjusted analysis and then increase statistical power by adjusting for prognostic factors.

PubMed Disclaimer

Comment in

Publication types