Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2008 Sep-Dec;31(3):219-34.
doi: 10.4321/s1137-66272008000500002.

[New therapeutic strategies for type 1 diabetes mellitus]

[Article in Spanish]
Affiliations
Free article
Review

[New therapeutic strategies for type 1 diabetes mellitus]

[Article in Spanish]
M Barajas et al. An Sist Sanit Navar. 2008 Sep-Dec.
Free article

Abstract

The main determinant of the risk of complications from type 1 diabetes mellitus is the total lifetime blood glucose levels. To impact on the health and quality of life of individuals with diabetes, safe and effective methods of achieving and maintaining normoglycemia are needed. Unfortunately, intensive insulin therapy does not achieve normal levels of blood glucose, is difficult to implement for many patients, and limited by the accompanying increased frequency of severe hypoglycemia. Hence, the only way at present to restore permanently normoglycemia without hypoglycemia is to provide the patient with additional beta-cells. This can be achieved by transplanting an intact pancreas, or by transplanting islets. The shortage of functional beta-cells from available donors is one of the major limiting factors for the treatment of diabetes by islet transplantation. Therefore, methods to preserve or even promote regeneration of the beta-cell mass are dearly needed. Significant progress has been made over the last decade in stem cell biology. However, the quest for identification of stem cells has been hampered by the lack of appropriate research tools including assays that allow assess their differentiation potential in vitro and in vivo. Therefore, new techniques are necessary in order to develop new therapeutic strategies based on stem cells for the treatment of diabetes mellitus type 1.

PubMed Disclaimer