Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2009 Feb;61(2):151-62.
doi: 10.1002/iub.159.

Phosphatidylserine decarboxylases, key enzymes of lipid metabolism

Affiliations
Free article
Review

Phosphatidylserine decarboxylases, key enzymes of lipid metabolism

Irmgard Schuiki et al. IUBMB Life. 2009 Feb.
Free article

Abstract

Phosphatidylserine decarboxylases (PSDs) (E.C. 4.1.1.65) are enzymes which catalyze the formation of phosphatidylethanolamine (PtdEtn) by decarboxylation of phosphatidylserine (PtdSer). This enzymatic activity has been identified in both prokaryotic and eukaryotic organisms. PSDs occur as two types of proteins depending on their localization and the sequence of a conserved motif. Type I PSDs include enzymes of eukaryotic mitochondria and bacterial origin which contain the amino acid sequence LGST as a characteristic motif. Type II PSDs are found in the endomembrane system of eukaryotes and contain a typical GGST motif. These characteristic motifs are considered as autocatalytic cleavage sites where proenzymes are split into alpha- and beta-subunits. The S-residue set free by this cleavage serves as an attachment site of a pyruvoyl group which is required for the activity of the enzymes. Moreover, PSDs harbor characteristic binding sites for the substrate PtdSer. Substrate supply to eukaryotic PSDs requires lipid transport because PtdSer synthesis and decarboxylation are spatially separated. Targeting of PSDs to their proper locations requires additional intramolecular domains. Mitochondrially localized type I PSDs are directed to the inner mitochondrial membrane by N-terminal targeting sequences. Type II PSDs also contain sequences in their N-terminal extensions which might be required for subcellular targeting. Lack of PSDs causes various defects in different cell types. The physiological relevance of these findings and the central role of PSDs in lipid metabolism will be discussed in this review.

PubMed Disclaimer

Publication types

MeSH terms

Substances

LinkOut - more resources