Effects of analgesics on the plantar incision-induced drop of the noxious heat threshold measured with an increasing-temperature water bath in the rat
- PMID: 19168047
- DOI: 10.1016/j.ejphar.2008.12.035
Effects of analgesics on the plantar incision-induced drop of the noxious heat threshold measured with an increasing-temperature water bath in the rat
Abstract
The behavioural noxious heat threshold i.e. the lowest temperature evoking nocifensive behaviour was previously shown to decrease in short-lasting, but not in sustained, inflammatory thermal hyperalgesias. The aim of this study was to examine whether the surgical incision-induced lasting heat hyperalgesia involves a drop of the heat threshold and to assess the effects of conventional opioid and non-opioid analgesics in this model. One of the hind paws of rats was immersed into a water bath whose temperature was near-linearly increased from 30 degrees C until the animal withdrew its paw from the water. The corresponding bath temperature was considered as the behavioural noxious heat threshold. Hyperalgesia to heat was induced by a standardized plantar surgical incision performed under pentobarbital anaesthesia which led to a 5-7 degrees C decrease of the noxious heat threshold for seven days. Morphine, diclofenac, and paracetamol administered intraperitoneally 18 h after incision dose-dependently inhibited the drop of heat threshold with minimum effective doses of 0.3, 1, and 100 mg/kg, respectively, as assessed 20, 30 and 40 min after treatment. Thermal hyperalgesia was also decreased by intraplantar treatment with morphine (10 microg) or diclofenac (100 microg). In conclusion, the incision-induced sustained thermal hyperalgesia in rats involves a drop of the heat threshold suggesting that mechanisms of postsurgical pain are distinct from those of pure inflammatory pain. The thermal antihyperalgesic actions of systemically and/or locally applied morphine, diclofenac and paracetamol could be detected with high temporal resolution and sensitivity in this model.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Medical