Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2009 Jan;26(1):42-54.
doi: 10.1080/09687680802680108. Epub 2009 Jan 30.

Palmitoylation cycles and regulation of protein function (Review)

Affiliations
Free article
Review

Palmitoylation cycles and regulation of protein function (Review)

Steinnunn Baekkeskov et al. Mol Membr Biol. 2009 Jan.
Free article

Abstract

The efficacy and success of many cellular processes is dependent on a tight orchestration of proteins trafficking to and from their site(s) of action in a time-controlled fashion. Recently, a dynamic cycle of palmitoylation/de-palmitoylation has been shown to regulate shuttling of several proteins, including the small GTPases H-Ras and N-Ras, and the GABA-synthesizing enzyme GAD65, between the Golgi compartment and either the plasma membrane or synaptic vesicle membranes. These proteins are peripheral membrane proteins that in the depalmitoylated state cycle rapidly on and off the cytosolic face of ER/Golgi membranes. Palmitoylation of one or more cysteines, by a Golgi localized palmitoyl transferase (PAT) results in trapping in Golgi membranes, and sorting to a vesicular pathway in route to the plasma membrane or synaptic vesicles. A depalmitoylation step by an acyl protein thioesterase (APT) releases the protein from membranes in the periphery of the cell resulting in retrograde trafficking back to Golgi membranes by a non-vesicular pathway. The proteins can then enter a new cycle of palmitoylation and depalmitoylation. This inter-compartmental trafficking is orders of magnitude faster than vesicular trafficking. Recent advances in identifying a large family of PATs, their protein substrates, and single PAT mutants with severe phenotypes, reveal their critical importance in development, synaptic transmission, and regulation of signaling cascades. The emerging knowledge of enzymes involved in adding and removing palmitate is that they provide an intricate regulatory network involved in timing of protein function and transport that responds to intracellular and extracellular signals.

PubMed Disclaimer

Publication types

LinkOut - more resources