Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2009;5(2):135-46.
doi: 10.7150/ijbs.5.135. Epub 2009 Jan 20.

Antitumor activity of T cells generated from lymph nodes draining the SEA-expressing murine B16 melanoma and secondarily activated with dendritic cells

Affiliations

Antitumor activity of T cells generated from lymph nodes draining the SEA-expressing murine B16 melanoma and secondarily activated with dendritic cells

Jiyun Yu et al. Int J Biol Sci. 2009.

Abstract

The successful use of tumor-draining lymph nodes (TDLN) as a source of effector cells for cancer immunotherapy depends largely on the immunogenicity of the tumor drained by the lymph nodes as well as the methods for secondary in vitro T cell activation and expansion. We transferred the bacterial superantigen staphylococcal enterotoxin A (SEA) gene into B16 murine melanoma tumor cells, and used them to induce TDLN (SEA TDLN) in syngeneic hosts. Wild-type (wt) TDLN induced by parental B16 tumor was used as a control. In vitro, SEA TDLN cells proliferated more vigorously, produced more IFN gamma and demonstrated higher CTL activity than wt TDLN cells when activated with anti-CD3/anti-CD28/IL-2. In vivo, SEA TDLN cells mediated tumor eradication more effectively than similarly activated wt TDLN cells (p<0.01). Furthermore, use of dendritic cells (DC) plus tumor antigen in vitro in addition to anti-CD3/anti-CD28/IL-2 stimulation further amplified the immune function and therapeutic efficacy of SEA TDLN cells. DC-stimulated SEA TDLN cells eliminated nearly 90% of the pulmonary metastasis in mice bearing established B16 melanoma micrometastases. These results indicate that enforced expression of superantigen SEA in poorly immunogenic tumor cells can enhance their immunogenicity as a vaccine in vivo. The combined use of genetically modified tumor cells as vaccine to induce TDLN followed by secondary stimulation using antigen-presenting cells and tumor antigen in a sequential immunization/activation procedure may represent a unique method to generate more potent effector T cells for adoptive immunotherapy of cancer.

Keywords: Adoptive therapy; B16 melanoma; Staphylococcal enterotoxin A (SEA); T lymphocyte; dendritic cells (DC).

PubMed Disclaimer

Conflict of interest statement

Conflict of Interest: The authors have declared that no conflict of interest exists.

Figures

Figure 1
Figure 1
A: Scheme for construction of recombinant expression vector pcDNA3.1 (+)/SEA. B: Restriction enzyme digestion of the recombinant expression vector pcDNA3.1-SEA. 1. λDNA/HindIII ladder; 2. pcDNA3.1-SEA/NheI + EcoRI; 3. pcDNA3.1-SEA/EcoRI; M: DL2000 marker. C: Transfected SEA fragment confirmed by RT-PCR product on agarose gel electrophoresis. Lanes 1-3: Three clones of SEA-B16 cells; M: DNA marker (DL2000).
Figure 1
Figure 1
A: Scheme for construction of recombinant expression vector pcDNA3.1 (+)/SEA. B: Restriction enzyme digestion of the recombinant expression vector pcDNA3.1-SEA. 1. λDNA/HindIII ladder; 2. pcDNA3.1-SEA/NheI + EcoRI; 3. pcDNA3.1-SEA/EcoRI; M: DL2000 marker. C: Transfected SEA fragment confirmed by RT-PCR product on agarose gel electrophoresis. Lanes 1-3: Three clones of SEA-B16 cells; M: DNA marker (DL2000).
Figure 1
Figure 1
A: Scheme for construction of recombinant expression vector pcDNA3.1 (+)/SEA. B: Restriction enzyme digestion of the recombinant expression vector pcDNA3.1-SEA. 1. λDNA/HindIII ladder; 2. pcDNA3.1-SEA/NheI + EcoRI; 3. pcDNA3.1-SEA/EcoRI; M: DL2000 marker. C: Transfected SEA fragment confirmed by RT-PCR product on agarose gel electrophoresis. Lanes 1-3: Three clones of SEA-B16 cells; M: DNA marker (DL2000).
Figure 2
Figure 2
Morphological observation of DCs under phase contrast microscope, scanning electron microscope, and transmission electron microscope after cell culture for 7 days.
Figure 3
Figure 3
Proliferation of TDLN cells stimulated with different conditions. Multiple inguinal TDLNs were pooled from groups of mice and were processed for lymphoid cell suspension. T cells were purified using the nylon wool column. Purified T cells were stimulated under the following conditions: Group A, D: Anti-CD3 + anti-CD28 + IL-2 plus DC and tumor lysates; Group B, E: Anti-CD3 + anti-CD28 + IL-2; Group C, F: Un-stimulated (medium only). 100μl of cell suspension was added to each well of 96-well culture plate in triplicate. Stimuli described above were added at 100μl/well. After culture for 48 hours, cell proliferation was measured with MTT analysis. P<0.01: A vs. B; A vs. C; A vs. D. B vs. E; C vs. F. D vs. E; D vs. F.
Figure 4
Figure 4
SEA TDLN cells activated with anti-CD3/anti-CD28/IL-2 plus DC and tumor antigen demonstrated the most potent therapeutic efficacy. In these adoptive transfer experiments, pulmonary metastases were induced by tail vein injection of 1 x 106 of wt B16 cells in 0.2 ml PBS in B6 mice. Three days later, the tumor-bearing mice were treated with variously activated TDLN cells (2 x 106 cells/mouse) by tail vein injection. Approximately 10 days after T cell transfer, all mice were randomized and sacrificed, and lungs were harvested for enumeration of pulmonary metastatic nodules. TDLN cells were activated with anti-CD3/anti-CD28/IL-2 plus DC and tumor antigen (Group A, D); anti-CD3/anti-CD28/IL-2 (Group B, E), or un-stimulated (Group C, F). P<0.01: A vs. B; A vs. C; A vs. D; B vs. E; C vs. F; D vs. E; D vs. F.
Figure 5
Figure 5
In vitro CTL activity of TDLN cells stimulated with different conditions. SEA TDLN and wt TDLN T cells were stimulated using anti-CD3 + anti-CD28 + IL-2 with (group A, D) or without (group B, E) DC plus tumor lysate, or left un-stimulated (group C, F), as in Figure 3. Stimulated T cells were washed, re-suspended at 4×106/ml and mixed with 3H-TdR-labeled B16 cells at 40: 1, 20: 1, and 10: 1 in U-bottom 96-well plate. After culture at 37oC with 5% CO2 for 18 hours, cpm was measured and the killing index was calculated.
Figure 6
Figure 6
IFNγ and IL-10 expression on activated TDLN cells. SEA TDLN and wt TDLN T cells were stimulated using anti-CD3 + anti-CD28 + IL-2 with (groups A, D) or without (groups B, E) DC plus tumor lysate, or left un-stimulated (groups C, F), as in Figure 3. After activation for 48 hours, TDLN T cells were permeablized and stained with FITC-conjugated anti-IFN-γ or PE-conjugated anti-IL-10. FACS analysis was then performed.

Similar articles

Cited by

References

    1. Dudley ME, Rosenberg SA. Adoptive-cell-transfer therapy for the treatment of patients with cancer. Cancer. 2003;3:666–675. - PMC - PubMed
    1. Dudley ME, Wunderlich JR, Robbins PF et al. Cancer regression and autoimmunity in patients after clonal repopulation with antitumor lymphocytes. Science. 2002;298:850–854. - PMC - PubMed
    1. Chang AE, Aruga A, Cameron MJ et al. Adoptive immunotherapy with vaccine-primed lymph node cells secondarily activated with anti-CD3 and interleukin-2. J Clin Oncol. 1997;15:796–807. - PubMed
    1. Chang AE, Li Q, Jiang G et al. Phase II trial of autologous tumor vaccination, anti-CD3-activated vaccine-primed lymphocytes, and interleukin-2 in stage IV renal cell cancer. J Clin Oncol. 2003;21:884–890. - PubMed
    1. Wang L, Chen B, Plautz GE. Adoptive immunotherapy of advanced tumors with CD62 L-selectinlow tumor-sensitized T lymphocytes following ex vivo hyperexpansion. J Immunol. 2002;169:3314–3320. - PubMed

Publication types