Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2009 Feb 26;52(4):989-1004.
doi: 10.1021/jm801058n.

Examination of the biological role of the alpha(2-->6)-linked sialic acid in gangliosides binding to the myelin-associated glycoprotein (MAG)

Affiliations

Examination of the biological role of the alpha(2-->6)-linked sialic acid in gangliosides binding to the myelin-associated glycoprotein (MAG)

Oliver Schwardt et al. J Med Chem. .

Abstract

The tetrasaccharide 1, a substructure of ganglioside GQ1b alpha, shows a remarkable affinity for the myelin-associated glycoprotein (MAG) and was therefore selected as starting point for a lead optimization program. In our search for structurally simplified and pharmacokinetically improved mimics of 1, modifications of the core disaccharide, the alpha(2-->3)- and the alpha(2-->6)-linked sialic acid were synthesized. Biphenylmethyl and (S)-lactate were identified as suitable replacements for the alpha(2-->6)-linked sialic acid. Combined with a core modification and the earlier found aryl amide substituent in the 9-position of the alpha(2-->3)-linked sialic acid, high affinity MAG antagonists were identified. All mimics were tested in a competitive target-based binding assay, providing relative inhibitory potencies (rIP). Compared to the reference tetrasaccharide 1, the rIPs of the most potent antagonists 59 and 60 are enhanced nearly 400-fold. Their K(D)s determined in surface plasmon resonance experiments are in the low micromolar range. These results are in semiquantitative agreement with molecular modeling studies. This new class of glycomimetics will allow to validate the role of MAG in the axon regeneration process.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources