Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2009 Feb;150(2):662-71.
doi: 10.1210/en.2008-0598. Epub 2008 Oct 16.

Peripheral administration of nesfatin-1 reduces food intake in mice: the leptin-independent mechanism

Affiliations

Peripheral administration of nesfatin-1 reduces food intake in mice: the leptin-independent mechanism

H Shimizu et al. Endocrinology. 2009 Feb.

Abstract

Nesfatin-1 is a novel satiety molecule in the hypothalamus and is also present in peripheral tissues. Here we sought to identify the active segment of nesfatin-1 and to determine the mechanisms of its action after peripheral administration in mice. Intraperitoneal injection of nesfatin-1 suppressed food intake in a dose-dependent manner. Nesfatin-1 has three distinct segments; we tested the effect of each segment on food intake. Injection of the midsegment decreased food intake under leptin-resistant conditions such as db/db mice and mice fed a high-fat diet. After injection of the midsegment, expression of c-Fos was significantly activated in the brainstem nucleus tractus solitarius (NTS) but not in the hypothalamic arcuate nucleus; the nicotinic cholinergic pathway to the NTS contributed to midsegment-induced anorexia. Midsegment injection significantly increased expression of proopiomelanocortin and cocaine- and amphetamine-regulated transcript genes in the NTS but not in the arcuate nucleus. Investigation of mutant midsegments demonstrated that a region with amino acid sequence similarity to the active site of agouti-related peptide was indispensable for anorexigenic induction. Our findings indicate that the midsegment of nesfatin-1 causes anorexia, possibly by activating POMC and CART neurons in the NTS via a leptin-independent mechanism after peripheral stimulation.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms