Molecular mechanisms of thioredoxin and glutaredoxin as hydrogen donors for Mammalian s phase ribonucleotide reductase
- PMID: 19176520
- PMCID: PMC2659180
- DOI: 10.1074/jbc.M809338200
Molecular mechanisms of thioredoxin and glutaredoxin as hydrogen donors for Mammalian s phase ribonucleotide reductase
Abstract
Ribonucleotide reductase (RNR) catalyzes the rate-limiting step in deoxyribonucleotide synthesis essential for DNA replication and repair. RNR in S phase mammalian cells comprises a weak cytosolic complex of the catalytic R1 protein containing redox active cysteine residues and the R2 protein harboring the tyrosine free radical. Each enzyme turnover generates a disulfide in the active site of R1, which is reduced by C-terminally located shuttle dithiols leaving a disulfide to be reduced. Electrons for reduction come ultimately from NADPH via thioredoxin reductase and thioredoxin (Trx) or glutathione reductase, glutathione, and glutaredoxin (Grx), but the mechanism has not been clarified for mammalian RNR. Using recombinant mouse RNR, we found that Trx1 and Grx1 had similar catalytic efficiency (k(cat)/K(m)). With 4 mm GSH, Grx1 showed a higher affinity (apparent K(m) value, 0.18 microm) compared with Trx1 which displayed a higher apparent k(cat), suggesting its major role in S phase DNA replication. Surprisingly, Grx activity was strongly dependent on GSH concentrations (apparent K(m) value, 3 mm) and a Grx2 C40S mutant was active despite only one cysteine residue in the active site. This demonstrates a GSH-mixed disulfide mechanism for glutaredoxin catalysis in contrast to the dithiol mechanism for thioredoxin. This may be an advantage with the low levels of RNR for DNA repair or in tumor cells with high RNR and no or low Trx expression. Our results demonstrate mechanistic differences between the mammalian and canonical Escherichia coli RNR enzymes, which may offer an explanation for the nonconserved shuttle dithiol sequences in the C terminus of the R1.
Figures








Similar articles
-
Glutathione-glutaredoxin is an efficient electron donor system for mammalian p53R2-R1-dependent ribonucleotide reductase.J Biol Chem. 2019 Aug 23;294(34):12708-12716. doi: 10.1074/jbc.RA119.008752. Epub 2019 Jul 2. J Biol Chem. 2019. PMID: 31266802 Free PMC article.
-
Two additional glutaredoxins exist in Escherichia coli: glutaredoxin 3 is a hydrogen donor for ribonucleotide reductase in a thioredoxin/glutaredoxin 1 double mutant.Proc Natl Acad Sci U S A. 1994 Oct 11;91(21):9813-7. doi: 10.1073/pnas.91.21.9813. Proc Natl Acad Sci U S A. 1994. PMID: 7937896 Free PMC article.
-
The levels of ribonucleotide reductase, thioredoxin, glutaredoxin 1, and GSH are balanced in Escherichia coli K12.J Biol Chem. 1996 Aug 9;271(32):19099-103. doi: 10.1074/jbc.271.32.19099. J Biol Chem. 1996. PMID: 8702583
-
Selenium and the thioredoxin and glutaredoxin systems.Biomed Environ Sci. 1997 Sep;10(2-3):271-9. Biomed Environ Sci. 1997. PMID: 9315320 Review.
-
The thioredoxin antioxidant system.Free Radic Biol Med. 2014 Jan;66:75-87. doi: 10.1016/j.freeradbiomed.2013.07.036. Epub 2013 Jul 27. Free Radic Biol Med. 2014. PMID: 23899494 Review.
Cited by
-
Regulatory T cells interfere with glutathione metabolism in dendritic cells and T cells.J Biol Chem. 2010 Dec 31;285(53):41525-32. doi: 10.1074/jbc.M110.189944. Epub 2010 Oct 30. J Biol Chem. 2010. PMID: 21037289 Free PMC article.
-
The glutathione system: a new drug target in neuroimmune disorders.Mol Neurobiol. 2014 Dec;50(3):1059-84. doi: 10.1007/s12035-014-8705-x. Epub 2014 Apr 22. Mol Neurobiol. 2014. PMID: 24752591 Review.
-
A Ferredoxin Disulfide Reductase Delivers Electrons to the Methanosarcina barkeri Class III Ribonucleotide Reductase.Biochemistry. 2015 Dec 1;54(47):7019-28. doi: 10.1021/acs.biochem.5b01092. Epub 2015 Nov 19. Biochemistry. 2015. PMID: 26536144 Free PMC article.
-
Molecular basis for the distinct functions of redox-active and FeS-transfering glutaredoxins.Nat Commun. 2020 Jul 10;11(1):3445. doi: 10.1038/s41467-020-17323-0. Nat Commun. 2020. PMID: 32651396 Free PMC article.
-
Proteomic analysis of endothelial cold-adaptation.BMC Genomics. 2011 Dec 22;12:630. doi: 10.1186/1471-2164-12-630. BMC Genomics. 2011. PMID: 22192797 Free PMC article.
References
-
- Nordlund, P., and Reichard, P. (2006) Annu. Rev. Biochem. 75 681–706 - PubMed
-
- Kolberg, M., Strand, K. R., Graff, P., and Andersson, K. K. (2004) Biochim. Biophys. Acta 1699 1–34 - PubMed
-
- Reichard, P. (2002) Arch. Biochem. Biophys. 397 149–155 - PubMed
-
- Kashlan, O. B., Scott, C. P., Lear, J. D., and Cooperman, B. S. (2002) Biochemistry 41 462–474 - PubMed
-
- Rofougaran, R., Vodnala, M., and Hofer, A. (2006) J. Biol. Chem. 281 27705–27711 - PubMed
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources
Molecular Biology Databases
Miscellaneous