Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2009 Feb 1;8(3):482-9.
doi: 10.4161/cc.8.3.7661. Epub 2009 Feb 19.

Replication stress activates DNA polymerase alpha-associated Chk1

Affiliations

Replication stress activates DNA polymerase alpha-associated Chk1

Lorena Taricani et al. Cell Cycle. .

Abstract

Chk1 contributes to both intra-S and DNA damage checkpoint responses. Here, we show that depletion of DNA Polalpha and not Polepsilon or Poldelta by siRNA induces phosphorylation of Chk1 on Ser345, thus phenocopying antimetabolite exposure. Combinatorial ablation of DNA Polalpha and Chk1 causes an accumulation of gamma-H2A.X, a marker of double-strand DNA breaks, suggesting that activation of Chk1 in this context is essential for suppression of DNA damage. Co-depletion of DNA Polalpha with ATR yields similar phenotypes, suggesting that ATR and Chk1 are epistatic and required for maintenance of genomic integrity following replication stress. Significantly, Chk1 and DNA Polalpha can be co-immunoprecipated from native cell extracts. Moreover, following replication stress, Polalpha-associated Chk1 becomes rapidly phosphorylated on Ser345 in a TopBP1 and ATR-dependent manner. Hence, the ability to efficiently phosphorylate Chk1 in the context of DNA Polalpha complexes is correlated with suppression of DNA damage following replication stress. These findings identify DNA Polalpha as an important component of the signal transduction cascade that activates the intra-S checkpoint.

PubMed Disclaimer

MeSH terms

LinkOut - more resources