Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1991 Oct;115(1):59-66.
doi: 10.1083/jcb.115.1.59.

Calcium transients during Fc receptor-mediated and nonspecific phagocytosis by murine peritoneal macrophages

Affiliations

Calcium transients during Fc receptor-mediated and nonspecific phagocytosis by murine peritoneal macrophages

T Hishikawa et al. J Cell Biol. 1991 Oct.

Abstract

Studies with populations of macrophages have produced conflicting results concerning the possibility that the concentration of intracellular ionized calcium [( Ca2+]i) may act as an important mediator for phagocytosis. Since asynchronous changes in [Ca2+]i in individual cells undergoing phagocytosis may be averaged to undetectability in population studies, we studied single adhering murine macrophages using fura-2 and our previously described digital imaging system. The proportion of macrophages phagocytosing IgG-coated latex beads was greater than for uncoated beads (percent phagocytosing cells: 71 +/- 7 vs. 27 +/- 7, P less than 0.01). Phagocytosis of IgG-coated and uncoated beads was always associated with a calcium transient that preceded the initiation of phagocytosis. No calcium transients were detected in cells that bound but did not phagocytose beads. Four major differences between Fc receptor-mediated and nonspecific phagocytosis were detected: (a) the duration of calcium transients was longer for nonspecific phagocytosis compared with Fc receptor-mediated phagocytosis (69.9 +/- 10.2 vs. 48.7 +/- 4.7 s, P less than 0.05) and the magnitude of calcium transients was less for nonspecific phagocytosis (178 +/- 43 vs. 349 +/- 53 nM, P less than 0.05); (b) removal of extracellular calcium abolished the calcium transients associated with nonspecific phagocytosis but had no effect on those associated with receptor-mediated phagocytosis; (c) in the absence of extracellular calcium, buffering intracellular calcium with a chelator reduced Fc receptor-mediated phagocytosis but had no additive inhibitory effect on nonspecific phagocytosis; and (d) inhibition of protein kinase C (PKC) with staurosporine inhibited nonspecific phagocytosis but had no effect on receptor-mediated phagocytosis. Our observations suggest that despite both types of phagocytosis being associated with intracellular calcium transients, the role played by intracellular calcium in the signaling pathways may differ for Fc receptor-mediated and nonspecific phagocytosis by elicited murine macrophages.

PubMed Disclaimer

Similar articles

Cited by

References

    1. J Cell Biol. 1988 Mar;106(3):657-66 - PubMed
    1. Blood. 1989 Apr;73(5):1188-94 - PubMed
    1. Biochem J. 1987 Dec 1;248(2):313-28 - PubMed
    1. Annu Rev Biochem. 1987;56:159-93 - PubMed
    1. Annu Rev Biochem. 1986;55:987-1035 - PubMed