Molecular recognition and self-assembly special feature: Encapsulation and characterization of proton-bound amine homodimers in a water-soluble, self-assembled supramolecular host
- PMID: 19181859
- PMCID: PMC2705522
- DOI: 10.1073/pnas.0809806106
Molecular recognition and self-assembly special feature: Encapsulation and characterization of proton-bound amine homodimers in a water-soluble, self-assembled supramolecular host
Abstract
Cyclic amines can be encapsulated in a water-soluble self-assembled supramolecular host upon protonation. The hydrogen-bonding ability of the cyclic amines, as well as the reduced degrees of rotational freedom, allows for the formation of proton-bound homodimers inside of the assembly that are otherwise not observable in aqueous solution. The generality of homodimer formation was explored with small N-alkyl aziridines, azetidines, pyrrolidines, and piperidines. Proton-bound homodimer formation is observed for N-alkylaziridines (R = methyl, isopropyl, tert-butyl), N-alkylazetidines (R = isopropyl, tert-butyl), and N-methylpyrrolidine. At high concentration, formation of a proton-bound homotrimer is observed in the case of N-methylaziridine. The homodimers stay intact inside the assembly over a large concentration range, thereby suggesting cooperative encapsulation. Both G3(MP2)B3 and G3B3 calculations of the proton-bound homodimers were used to investigate the enthalpy of the hydrogen bond in the proton-bound homodimers and suggest that the enthalpic gain upon formation of the proton-bound homodimers may drive guest encapsulation.
Conflict of interest statement
The authors declare no conflict of interest.
Figures








Similar articles
-
Proton-mediated chemistry and catalysis in a self-assembled supramolecular host.Acc Chem Res. 2009 Oct 20;42(10):1650-9. doi: 10.1021/ar900118t. Acc Chem Res. 2009. PMID: 19591461
-
Making amines strong bases: thermodynamic stabilization of protonated guests in a highly-charged supramolecular host1.J Am Chem Soc. 2007 Sep 19;129(37):11459-67. doi: 10.1021/ja072654e. Epub 2007 Aug 22. J Am Chem Soc. 2007. PMID: 17713905
-
How short is the strongest hydrogen bond in the proton-bound homodimers of pyridine derivatives?J Phys Chem A. 2014 Nov 13;118(45):10804-12. doi: 10.1021/jp5082033. Epub 2014 Nov 3. J Phys Chem A. 2014. PMID: 25327551
-
Supramolecular chemistry in water.Angew Chem Int Ed Engl. 2007;46(14):2366-93. doi: 10.1002/anie.200602815. Angew Chem Int Ed Engl. 2007. PMID: 17370285 Review.
-
Coupling of electron transfer to proton uptake at the Q(B) site of the bacterial reaction center: a perspective from FTIR difference spectroscopy.Biochim Biophys Acta. 2008 Oct;1777(10):1229-48. doi: 10.1016/j.bbabio.2008.06.012. Epub 2008 Jul 11. Biochim Biophys Acta. 2008. PMID: 18671937 Review.
Cited by
-
Molecular recognition and self-assembly special feature: Introduction to the molecular recognition and self-assembly special feature.Proc Natl Acad Sci U S A. 2009 Jun 30;106(26):10423-4. doi: 10.1073/pnas.0905341106. Proc Natl Acad Sci U S A. 2009. PMID: 19567839 Free PMC article. No abstract available.
-
Anticancer Activity of Self-Assembled Molecular Rectangles via Arene-Ruthenium Acceptors and a New Unsymmetrical Amide Ligand.Organometallics. 2012 May 14;31(9):3519-3526. doi: 10.1021/om2012826. Epub 2012 Apr 13. Organometallics. 2012. PMID: 22639481 Free PMC article.
-
Construction of hexagonal prisms of variable size via coordination-driven multicomponent self-assembly.Inorg Chem. 2010 Oct 4;49(19):8653-5. doi: 10.1021/ic1014219. Inorg Chem. 2010. PMID: 20809652 Free PMC article.
-
A facile approach toward multicomponent supramolecular structures: selective self-assembly via charge separation.J Am Chem Soc. 2010 Dec 1;132(47):16873-82. doi: 10.1021/ja106251f. Epub 2010 Nov 5. J Am Chem Soc. 2010. PMID: 21053935 Free PMC article.
-
Coordination-driven self-assembly of truncated tetrahedra capable of encapsulating 1,3,5-triphenylbenzene.Inorg Chem. 2010 Nov 15;49(22):10238-40. doi: 10.1021/ic1018373. Epub 2010 Oct 15. Inorg Chem. 2010. PMID: 20949905 Free PMC article.
References
-
- Bachovchin WW. Contributions of NMR spectroscopy to the study of hydrogen bonds in serine protease active sites. Magn Res Chem. 2001;39:S199–S213.
-
- Frey PA. Strong hydrogen bonding in molecules and enzymatic complexes. Magn Res Chem. 2001;39:S190–S198.
-
- Nadassy K, Wodak SJ, Janin J. Structural features of protein-nucleic acid recognition sites. Biochemistry. 1999;38:1999–2017. - PubMed
-
- Wiest O, Houk KN. Stabilization of the transition state of the chorismate-prephenate rearrangement: An ab-initio study of enzyme and antibody catalysis. J Am Chem Soc. 1995;117:11628–11639.
-
- Mautner M. The ionic hydrogen bond. Chem Rev. 2005;105:213–284. - PubMed