Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2009 Jan 30:6:1.
doi: 10.1186/1743-8454-6-1.

A review of the current treatment methods for posthaemorrhagic hydrocephalus of infants

Affiliations

A review of the current treatment methods for posthaemorrhagic hydrocephalus of infants

David Shooman et al. Cerebrospinal Fluid Res. .

Abstract

Posthaemorrhagic hydrocephalus (PHH) is a major problem for premature infants, generally requiring lifelong care. It results from small blood clots inducing scarring within CSF channels impeding CSF circulation. Transforming growth factor - beta is released into CSF and cytokines stimulate deposition of extracellular matrix proteins which potentially obstruct CSF pathways. Prolonged raised pressures and free radical damage incur poor neurodevelopmental outcomes. The most common treatment involves permanent ventricular shunting with all its risks and consequences.This is a review of the current evidence for the treatment and prevention of PHH and shunt dependency. The Cochrane Central Register of Controlled Trials (CENTRAL, The Cochrane Library) and PubMed (from 1966 to August 2008) were searched. Trials using random or quasi-random patient allocation for any intervention were considered in infants less than 12 months old with PHH. Thirteen trials were identified although speculative interventions were also evaluated.The literature confirms that lumbar punctures, diuretic drugs and intraventricular fibrinolytic therapy can have significant adverse effects and fail to prevent shunt dependence, death or disability. There is no evidence that postnatal phenobarbital administration prevents intraventricular haemorrhage (IVH). Subcutaneous reservoirs and external drains have not been tested in randomized controlled trials, but can be useful as a temporising measure. Drainage, irrigation and fibrinolytic therapy as a way of removing blood to inhibit progressive deposition of matrix proteins, permanent hydrocephalus and shunt dependency, are invasive and experimental. Studies of ventriculo-subgaleal shunts show potential as a temporary method of CSF diversion, but have high infection rates.At present no clinical intervention has been shown to reduce shunt surgery in these infants. A ventricular shunt is not advisable in the early phase after PHH. Evidence exists that pre-delivery corticosteroid therapy reduces mortality and IVH and there may be trends towards reduced disability in the short term. There is also evidence that postnatal indomethacin reduces IVH but with no effect on mortality or disability. Overall, there is still no definitive algorithm for the treatment of PHH or prevention of shunt dependence. New therapeutic approaches in neonatal care, including those aimed at pre-empting PHH, offer the best hope of improving neurodevelopmental outcomes.

PubMed Disclaimer

Figures

Figure 1
Figure 1
MR images of the head of a very low birth weight infant nine days after birth. A: Sagittal T1-weighted MRI showing layering of the intraventricular haemorrhage within the venticles and in the posterior fossa (arrows). B: CISS (Constructive Interference in the Steady State) sequence giving heavily T2-weighted high resolution images with excellent fluid contrast demonstrating the dilated ventricular system in white and the dependent haemorrhage (arrows). C: T1-weighted axial MRI scan showing layering of the intraventricular haemorrhage (arrows) and a left scalp haematoma (arrowhead). D: T2-weighted axial MRI showing layering of the intraventricular haemorrhage (arrows) and a left scalp haematoma (arrowhead). The most striking features on these scans are hydrocephalus with intracranial haemorrhage, which is seen layering within the lateral ventricles.
Figure 2
Figure 2
Ultrasound images of the head of a 2 week old normal term infant scanned with an 8V5 ultrasound probe on an Acuson Sequoia 512 ultrasound machine (Siemens, Erlanger, Germany). A: Sagittal view, arrow indicates the caudo-thalamic groove used as a reference point. B: Coronal view, again arrow referencing the normal caudo-thalamic groove.
Figure 3
Figure 3
Ultrasound images of a 2 day old premature infant born at 28 weeks scanned with a C8-5 ultrasound probe on a Philips iE33 ultrasound machine (Philips Medical Systems, Eindhoven, Netherlands). A: Sagittal scan presenting with bilateral grade III intraventricular haemorrhage, with blood in the caudo-thalamic groove (arrow). B: Coronal ultrasound scan presenting bilateral grade III intraventricular haemorrhage (arrows), with greater than 50% filling of the lateral ventricles. C: Coronal ultrasound scan with bilateral grade III post haemorrhagic hydrocephalus in the same infant six weeks later. The dilated anterior and temporal horns of the right lateral ventricle are apparent (arrows).
Figure 4
Figure 4
Ultrasound images of infants with different grades of intraventricular haemorrhage scanned with a C8-5 ultrasound probe on a Philips iE33 ultrasound machine. A: Coronal view of a 2 week old term infant with grade I intraventricular haemorrhage highlighted in the left caudo-thalamic groove (arrow). B: Coronal view of a 1 day old premature infant born at 24 weeks with grade II intraventricular haemorrhage in the right caudo-thalamic groove (arrow) which fills less than 50% of the ventricle. C: Coronal view of a 2 day old premature infant born at 24 weeks with a right grade IV intraventricular haemorrhage with hydrocephalus and extension into periventricular white matter (arrow).

Similar articles

Cited by

References

    1. Murphy BP, Inder TE, Rooks V, Taylor GA, Anderson NJ, Mogridge N, Horwood LJ, Volpe JJ. Posthaemorrhagic ventricular dilatation in the premature infant: natural history and predictors of outcome. Arch Dis Child Fetal Neonatal Ed. 2002;87:F37–41. doi: 10.1136/fn.87.1.F37. - DOI - PMC - PubMed
    1. Sheth RD. Trends in incidence and severity of intraventricular hemorrhage. J Child Neurol. 1998;13:261–264. doi: 10.1177/088307389801300604. - DOI - PubMed
    1. Volpe JJ. Neurology of the newborn. 4. Philadelphia, Pa.; London: Saunders; 2008.
    1. Dobrzańska A, Pleskaczyńska A, Jędrzejczak A, Czech-Kowalska J, Ryciak E, Gruszfeld D. Respiratory distress syndrome and mechanical ventilation as risk factors of severe intraventricular haemorrhages in preterm infants. J Ped Neonatal. 2006;3:43–47.
    1. Persson EK, Hagberg G, Uvebrant P. Hydrocephalus prevalence and outcome in a population-based cohort of children born in 1989–1998. Acta Paediatr. 2005;94:726–732. doi: 10.1080/08035250510027336. - DOI - PubMed

LinkOut - more resources