Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2009 May;106(5):1424-37.
doi: 10.1111/j.1365-2672.2008.04100.x. Epub 2009 Feb 2.

Biofilm problems in dental unit water systems and its practical control

Affiliations
Review

Biofilm problems in dental unit water systems and its practical control

D C Coleman et al. J Appl Microbiol. 2009 May.

Abstract

Dental chair units (DCUs) contain integrated systems that provide the instruments and services for a wide range of dental procedures. DCUs use water to cool and irrigate DCU-supplied instruments and tooth surfaces during dental treatment. Water is supplied to these instruments by a network of interconnected narrow-bore (2-3 mm) plastic tubes called dental unit waterlines (DUWLs). Many studies over the last 40 years demonstrated that DUWL output water is often contaminated with high densities of micro-organisms, predominantly Gram-negative aerobic heterotropic environmental bacteria, including Legionella and Pseudomonas species. Untreated DUWLs host biofilms that permit micro-organisms to multiply and disperse through the water network and which are aerosolized by DCU instrument use, thus exposing patients and staff to these micro-organisms, to fragments of biofilm and bacterial endotoxins. This review concentrates on how practical developments and innovations in specific areas can contribute to effective DUWL biofilm control. These include the use of effective DUWL treatment agents, improvements to DCU supply water quality, DCU design changes, development of automated DUWL treatment procedures that are effective at controlling biofilm in the long-term and require minimal human intervention, are safe for patients and staff, and which do not cause deterioration of DCU components following prolonged use.

PubMed Disclaimer

Publication types