P2X7 receptors regulate multiple types of membrane trafficking responses and non-classical secretion pathways
- PMID: 19189228
- PMCID: PMC2686822
- DOI: 10.1007/s11302-009-9132-8
P2X7 receptors regulate multiple types of membrane trafficking responses and non-classical secretion pathways
Abstract
Activation of the P2X7 receptor (P2X7R) triggers a remarkably diverse array of membrane trafficking responses in leukocytes and epithelial cells. These responses result in altered profiles of cell surface lipid and protein composition that can modulate the direct interactions of P2X7R-expressing cells with other cell types in the circulation, in blood vessels, at epithelial barriers, or within sites of immune and inflammatory activation. Additionally, these responses can result in the release of bioactive proteins, lipids, and large membrane complexes into extracellular compartments for remote communication between P2X7R-expressing cells and other cells that amplify or modulate inflammation, immunity, and responses to tissue damages. This review will discuss P2X7R-mediated effects on membrane composition and trafficking in the plasma membrane (PM) and intracellular organelles, as well as actions of P2X7R in controlling various modes of non-classical secretion. It will review P2X7R regulation of: (1) phosphatidylserine distribution in the PM outer leaflet; (2) shedding of PM surface proteins; (3) release of PM-derived microvesicles or microparticles; (4) PM blebbing; (5) cell-cell fusion resulting in formation of multinucleate cells; (6) phagosome maturation and fusion with lysosomes; (7) permeability of endosomes with internalized pathogen-associated molecular patterns; (8) permeability/integrity of mitochondria; (9) exocytosis of secretory lysosomes; and (10) release of exosomes from multivesicular bodies.
References
-
- {'text': '', 'ref_index': 1, 'ids': [{'type': 'PubMed', 'value': '10811223', 'is_inner': True, 'url': 'https://pubmed.ncbi.nlm.nih.gov/10811223/'}]}
- Fadok VA, Bratton DL, Rose DM, Pearson A, Ezekewitz RA, Henson PM (2000) A receptor for phosphatidylserine-specific clearance of apoptotic cells. Nature 405:85–90 - PubMed
-
- {'text': '', 'ref_index': 1, 'ids': [{'type': 'PubMed', 'value': '6418205', 'is_inner': True, 'url': 'https://pubmed.ncbi.nlm.nih.gov/6418205/'}]}
- Bevers EM, Comfurius P, Zwaal RF (1983) Changes in membrane phospholipid distribution during platelet activation. Biochim Biophys Acta 736:57–66 - PubMed
-
- {'text': '', 'ref_index': 1, 'ids': [{'type': 'PubMed', 'value': '560868', 'is_inner': True, 'url': 'https://pubmed.ncbi.nlm.nih.gov/560868/'}]}
- Comfurius P, Zwaal RF (1977) The enzymatic synthesis of phosphatidylserine and purification by CM-cellulose column chromatography. Biochim Biophys Acta 488:36–42 - PubMed
-
- {'text': '', 'ref_index': 1, 'ids': [{'type': 'PubMed', 'value': '10446420', 'is_inner': True, 'url': 'https://pubmed.ncbi.nlm.nih.gov/10446420/'}]}
- Bevers EM, Comfurius P, Dekkers DW, Zwaal RF (1999) Lipid translocation across the plasma membrane of mammalian cells. Biochim Biophys Acta 1439:317–330 - PubMed
-
- {'text': '', 'ref_index': 1, 'ids': [{'type': 'PubMed', 'value': '12471163', 'is_inner': True, 'url': 'https://pubmed.ncbi.nlm.nih.gov/12471163/'}]}
- Balasubramanian K, Schroit AJ (2003) Aminophospholipid asymmetry: a matter of life and death. Annu Rev Physiol 65:701–734 - PubMed
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources
