Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2009 Apr;7(4):701-9.
doi: 10.1111/j.1538-7836.2009.03304.x. Epub 2009 Jan 22.

p38 mitogen-activated protein kinase targets the production of proinflammatory endothelial microparticles

Affiliations
Free article

p38 mitogen-activated protein kinase targets the production of proinflammatory endothelial microparticles

A M Curtis et al. J Thromb Haemost. 2009 Apr.
Free article

Abstract

Background: Endothelial microparticles (EMPs) are irregularly shaped membrane fragments shed into the circulation in patients with vascular diseases, and may themselves act to enhance the endothelial response to inflammation. On the basis of the importance of p38 mitogen-activated protein kinase (MAPK) in endothelial responses to inflammatory stimuli, we sought to define the role of p38 in EMP generation and function.

Methods: Microparticle generation from cultures of human aortic endothelial cells (hAECs) treated with tumor necrosis factor-alpha (TNF-alpha) and p38 inhibition was quantified via multiple modalities. The response of target endothelial cells was assessed by treatment of cells with EMPs generated under various conditions.

Results: Inhibition of p38 in hAECs, using pharmacologic agents, resulted in a 50% reduction of TNF-alpha-induced EMPs. Importantly, suppression of microparticles was specific to p38 MAPK pathways. EMPs triggered by TNF-alpha activation induced an approximately four-fold increase in soluble intercellular adhesion molecule-1 (sICAM-1) release from targeted cells. However, inhibition of p38 MAPK in the targeted cell prior to EMP treatment did not alter the sICAM1 response.

Conclusions: Our findings implicate p38 MAPK signaling as significant and selective in the formation and maturation of EMPs. EMPs elicited a proinflammatory response from targeted hAECs that was dependent on the conditions under which EMPs were generated. However, our results imply a unidirectional model in which p38 MAPK is critical at the source of microparticle formation, but not the target cell response to EMPs. These findings indicate a novel mechanism by which p38 inhibition may offer therapeutic benefit in vivo via direct inhibition of EMP formation.

PubMed Disclaimer

MeSH terms

Substances

LinkOut - more resources